n阶韦达定理

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:38:27
用二项式定理证明2的n次方大于n的平方,n大于等于5.

证明如图手机提问的朋友在客户端右上角评价点【满意】即可

如何用夹逼定理证明n根号3^n-e^n的极限是3?

(3^n-e^n)^(1/n)=3[1-(e/3)^n)^(1/n)∵0

用夹逼定理证明limn!/2^n=0

很明显,他的极限不是零啊,是不是lim2^n/n!=0啊?证明:2^n/n!>0/n!=0;2^n/n!=2*2*2*……2/n!

用夹逼定理证明lim2^n/n!=0

下面给出一般情形,另a=2即可证明:lima的n次方/n!=0【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……

用夹逼定理求极限运用夹逼定理求下列序列的极限(6n^4+n-2)^(1/n)(lg3n)^(1/n)[2/(3n^2-n

利用一系列不等式,将其化为小于大于,可能两边都是带n方程,或者一边是数字1一边是n方程,如果带n的方程是一次的,就可以令这个方程小于一个无穷小数加1,解出n,则n是一个大与带无穷小数的方程,所以就等到

用夹逼定理求极限:lim(n→∞)n!/n^n

0∵lim(n→∞)1/n=0∴lim(n→∞)n!/n^n=0

海涅定理为什么用的是1/n

因为它要取具体的ε,要取无数个,这无数个ε分别是什么呢?是1,1/2,1/3……,1/n当然你也可以取别的,1/2n也可以

用二项式定理证明(2/3)^(n-1)

证明:∵(3/2)^(n-1)=(1+1/2)^(n-1)=1+(n-1)/2+(n-1)(n-2)/8+...>1+(n-1)/2=(n+1)/2>0∴(2/3)^(n-1)前两项的和1+(n-1)

用二项式定理证明:2^n>2n(n≥3,n∈N)

证明:∵n∈N∴2^n=(1+1)^n=C(0,n)+C(1,n)+...+C(k,n)+...+C(n,n),(0<k<n,n,k∈N)∵n≥3∴2^n=C(0,n)+C(1,n)+...+C(n-

用二项式定理证明:(n+1)^n-1能被n^2整除

(n+1)^n-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)+C(n,n)-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-

利用二项式定理证明 3^n>2n^2+1

当n=123时显然成立当n>=4时3^n=(1+2)^n>(nC0)+(nC1)*2+(nC2)*2^2=1+2n+n(n-1)/2*4=2n^2-1

1)用二项式定理证明 (n+1)^n -1 能被n^2整除

1.当n=1或2时,明显成立.当n≥3时,证明如下.(n+1)^n-1=C(n,0)n^n+C(n,1)n^(n-1)+……+C(n,n-2)n^2+C(n,n-1)+C(n,n)-1=C(n,0)n

用二项式定理证明(n+1)^n-1能被n^2整除

原式=n^n+C(n,1)*n^(n-1)+C(n,2)*n^(n-2)+...+C(n,2)*n^2+C(n,1)*n=n^n+C(n,1)*n^(n-1)+C(n,2)*n^(n-2)+...+C

数学定理证明求证2^n-1=2^n-1+2^n-2+2^n-3+.+2^n-n

2^(n-1)+2^(n-2)+2^(n-3)+.+2^(n-n)为等比数列公比为q=0.5,利用等比数列求和公式Sn=(a1+an*q)/(1-q)(公比为q)此处q=0.5证明见下2^(n-1)+

mobius反演定理定理说明了什么问题...另外那个d|n求和是什么意思啊?

用线性代数的观点来看,定理说明数论函数f(n)和其和函数F(n)可以互相线性表出,然后,d|n,是说d是n的因子,放在求和号下面就是对n的所有不同因子d进行求和.再问:这里的数论函数指的是哪个数论函数

定理.

1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点

二项式定理中C(n,0)为什么是1

这个没证明归纳出的公式看了吗?经验公式浅层次解释(只适用于初学,以后不能用此解释)就是从n个物中取0个进行组合,什么都不取有一种方法(就是不取!),所以是1.