设(X1,X2,XN)是来自正太总体的样本证明服从自由度为n的卡方分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:47:05
概率论与数理统计的题目 设x1,x2,.xn是来自U(-1,1)的样本

U(-1,1)  -->f(x) = 1/2 for -1 < x < 1;&nb

设X1,X2,…Xn是来自二项分布总体B(n,p)的简单随机样本,.X

因为.X与S2分别为总体均值与方差的无偏估计,且二项分布的期望为np,方差为np(1-p),故E(.X)=np,E(S2)=np(1-p).从而,由期望的性质可得,E(T)=E(.X)-E(S2)=n

设(X1,X2,……,Xn)是取自正态总体N(U,δ^2)的样本,

EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516

设x1.x2,.xn是正数,求证(x1+x2+……+xn)(1/x1 +1/x2 +……+1/xn )≥n^2关于柯西不

同学..这个已经接近柯西不等式的一般形式了一般形式为(a1^2+a2^2+.an^2)(b1^2+b2^2+...b^2)>=(a1b1+a2b2+.anbn)^2令ai=√xi,bi=1/√xi就得

设x1,x2,...,xn属于正实数且x1+x2+...+xn=1,求证:x1^2/1+x1+x2^2/1+x2+...

两边同乘[(1+x1)+(1+x2)+.(1+xn)]即(n+1)即证:[(1+x1)+(1+x2)+.(1+xn)]*[x1^2/1+x1+x2^2/1+x2+...+xn^2/1+xn]=>1显然

设X1,X2.Xn是来自均匀分布总体U(0,c)的样本,求样本的联合概率密度

均匀分布的总体U的概率密度为f(u)=1/c.总体U的独立样本X1,X2,...,Xn的联合概率密度为:f*(x1,x2,...,xn)=Πf(xi)=1/(c的n次方)再问:求具体步骤再答:这已经是

设X1,X2,...Xn是来自正态总体N(μ,σ^2)的简单随机样本

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?

由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)

设X1,X2.Xn是来自正态总体N(0,1)的样本,则随机变量Y=C(X1-X2+X3-X4)^2~x^2(1)则常数C

E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,

设X1、X2、X3……Xn是整数,

设其中有a个2,b个1,c个零,d个-1,可知a+b+c+d=n且a,b,c,d均为大于等于零的整数,并满足2a+b-d=194a+b+d=99令S=X1的立方+X2的立方+……Xn的立方则有S=8a

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设X1 X2…… Xn是来自总体的一个样本 求样本均值 样本方差

均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n

设排列x1,x2…Xn是奇排列,那么Xn,Xn-1,…X1的奇偶性如何?求详解,

分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4