设a,b为实数.求证根号下a2 b2大于等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:01:00
注意到不等式的左边是三个直角三角形斜边的和,可以考虑把符号化的式子转化为直观的几何图形,把抽象问题形象化.作如下图,由两点之间,线段最短,马上可得要求证的结论.而且从图中可以知道当且仅当a=b=c时取
根号7=a+b而a=2所以(a^2+ab)=a(a+b)=根号7*a=2*根号7那么根号7乘以(a2+ab)=2*根号7*根号7=14
因为:a+b+c=1,将它两边同时平方得到:a^2+b^2+c^2+2ab+2ac+2bc=1a^2+b^2+c^2=1-2ab+2ac+2bc,由(1)又a^2+b^2>=2aba^2+c^2>=2
2(a²+b²)>=a²+b²+2*a*b=(a+b)²a²+b²>=(a+b)²/2√(a²+b²
∵a2+b2≥12(a+b) 2∴a2+b2-ab(a+b)≥而12(a+b) 2-ab(a+b)=12(a+b)(a+b-2ab)=12(a+b)(a−b)2≥0∴a2+b2-a
这道题,你看下你问的对不对把你给的条件两边平方一下,然后移项合并,你会发现(a-b)^2=0,也就是你的命题只有在a=b是才成立,又哪里来的求证呢?
对于任意实数x>1,有ax+x/(x-1)>b等价于min{a(x-1)+1\(x-1)+a+1(x>1)}>b等价于2a^(1\2)+a+1>b(a,b>0)等价于1+a^(1\2)>b^(1\2)
a/√b+b/√a>√a+√ba√a+b√b>a√b+b√aa(√a-√b)>b(√a-√b)(a-b)(√a-√b)>0(√a+√b)(√a-√b)²>0当a≠b时,上式恒成立,即结论成立
a^2+b^2≥1/2*(a+b)^2所以√(a^2+b^2)≥√2/2*(a+b)同理√(a^2+c^2)≥√2/2*(a+c)√(c^2+b^2)≥√2/2*(c+b)所以根号(a^2+b^2)+
a、b为正实数,求证a^2/b+b^2/a≥a+b(a^2/b+b)≥2根号下(a^2/b*b)=2a,(b^2/a+a)≥2根号下(b^2/a*a)=2b,两式相加:a^2/b+b+b^2/a+a≥
我经常看到类似的提问,能提出这种问题的人,恕我直言,既然都是“基本不等式”,先把它死记下来,硬背下来,随时活用---------记住我说的,这才是学习之道:证明无非就是利用:(a-b)²≥0
√a²+b²≥√[(a+b)²/2]=(a+b)/√2√b²+c²≥√[(b+c)²/2]=(b+c)/√2√a²+c²
根号(a2/b)+根号(b2/a)=a/b√b+b/a√a=(a^2√a+b^2√b)/(ab){√(a2/b)+√(b2/a)}-(√a+√b)=(a^2√a+b^2√b)/(ab)-(√a+√b)
解题思路:本题根据多项式之间的乘法化简为=1/2×(a+b+c)[(a-b)²+(b-c)²+(c-a)²]的形式即可判断解题过程:证明:对于正数a、b、c,有a3+b3+c3≥3abc成立,等号当且
不等号两边同时平方得左边=a+2b+c+2根号下(a+b)根号下(b+c)右边=c+a做差法比较左边-右边=2b+2根号下(a+b)根号下(b+c)a,b,c属于正实数2b+2根号下(a+b)根号下(
1/a+1/b+1/c+abc=1/a+1/b+1/c+abc/3+abc/3+abc/3>=6(1/a*1/b*1/c*abc/3*abc/3*abc/3)的6次方根=6(1/3)的6次方根=6/根
由均值不等式:a+b≥2√ab及平方均值不等式:(a²+b²)/2≥[(a+b)/2]²得:(a²+b²)/(2c)+c≥2√(a²+b
题目是:根号(a^2+b^2)+根号(b^2+c^2)+根号(c^2+a^2)≥(根号2)*根号(a+b+c)吧!因为(a-b)^2>=0,所以a^2+b^2>=2ab,两边同加a^2+b^2得:2*
(a-b)^2/2≥0a^2/2-ab+b^2/2≥0a^2+b^2≥(a^2+2ab+b^2)/2a^2+b^2≥(a+b)^2/2√(a^2+b^2)≥√2/2*(a+b)^2
4=4A^2+B^25=4A^2+B^2+1=(2A)^2+[√(1+B^2)]^2≥2*2A*√(1+B^2)A√(1+B^2)≤5/4A√(1+B^2)最大值是5/4