设A,B为方阵,且A为对称矩阵,证明BtAB也是对称矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:07:36
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
实对称矩阵必可以相似对角化,正定,那么所有特征值大于0,所以和单位矩阵合同,再问:能不能给个证明过程?考试时用!可逆矩阵p能表达出来吗?再答:不会吧?这怎么能写出具体的啊。矩阵都不知道,什么样子也不知
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转
证明某阵A为对称阵,只需要有AT=A(BTAB)T=BTAT(BT)T=BTATB又A为对称阵AT=A代入得BTATB=BTAB所以BTAB为对称阵
|-2A|=(-2)^3*|A|=-8*1/2=-4
|AB|=|A||B|=2*3=6.
[(B)TAB]T=(B)TATB=(B)TAB证毕!
X=A的逆矩阵乘以B解释:|A|≠0,说明A的逆矩阵存在方程AX=B,左乘A的逆矩阵使方程左边变成X,右边做同样的变化,所以就是A的逆矩阵乘以B.这样得到X.
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
由2A-B-AB=E及A^2=A得A+A^2-AB-B=E,所以(A-B)(A+E)=E,由此知,A-B可逆,且其逆为A+E.
因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA所以AB+BA也为对称矩阵
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
设B=A+A',则Bij=Aij+Aji=Bji,知B为对称矩阵另一个类似
先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.
由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵
由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,