设A,B为方阵,且A为对称矩阵,证明BtAB也是对称矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:07:36
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设A,B为n阶实对称方阵,且A正定,则存在实可逆矩阵P,使 P' AP=E,同时P' BP=diag(λ1,…,λn).

实对称矩阵必可以相似对角化,正定,那么所有特征值大于0,所以和单位矩阵合同,再问:能不能给个证明过程?考试时用!可逆矩阵p能表达出来吗?再答:不会吧?这怎么能写出具体的啊。矩阵都不知道,什么样子也不知

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

设A,B为n阶方阵,且A为对称阵,试证明BTAB也是对称阵.

证明某阵A为对称阵,只需要有AT=A(BTAB)T=BTAT(BT)T=BTATB又A为对称阵AT=A代入得BTATB=BTAB所以BTAB为对称阵

设矩阵A为方阵且|A|≠0,则方程AX=B的解是

X=A的逆矩阵乘以B解释:|A|≠0,说明A的逆矩阵存在方程AX=B,左乘A的逆矩阵使方程左边变成X,右边做同样的变化,所以就是A的逆矩阵乘以B.这样得到X.

设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵

首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA

设A,B为n阶方阵,且2A-B-AB=E,A^2=A,证明:A-B可逆,并求其逆矩阵

由2A-B-AB=E及A^2=A得A+A^2-AB-B=E,所以(A-B)(A+E)=E,由此知,A-B可逆,且其逆为A+E.

设A为对称矩阵,且|A|≠0,证明:A^-1也为对称矩阵

因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A,B为同阶级对称矩阵,证明AB+BA也为对称矩阵

(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA所以AB+BA也为对称矩阵

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设A为n阶方阵,怎样证明A+A的转置为对称矩阵?A-A的转置为反对称矩阵?

设B=A+A',则Bij=Aij+Aji=Bji,知B为对称矩阵另一个类似

设A,B为实对称矩阵,且B正定,则存在S及对称矩阵D,使得

先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.

设A,B为n阶矩阵,且A为对称矩阵,证明:BTAB也是对称矩阵.

由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵

设A为实对称矩阵,且A正交相似于B,证明B为实对称矩阵.

由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,