设A为n阶实矩阵,则对于线性方程组

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:46:19
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

设A是m*n矩阵,且列向量组线性无关,B是n阶矩阵,满足AB=A,则r(B)等于多少

易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,

线性代数设A为n阶矩阵,且A^9=0,则A A=0 B A有一个非零特征值 C A的特征值全为零 D A有n个线性无关的

C正确.再问:为什么啊?再答:设λ是A的特征值则λ^9是A^9=0的特征值.而零矩阵的特征值只能是零所以λ^9=0.所以λ=0.

设A为n阶可逆矩阵,则矩阵的每一列构成的向量组一定线性无关.这句话是否正确?

正确.可逆矩阵不但每一列构成的向量组线性无关,每一行构成的向量组也线性无关.再问:能不能解析下,谢谢啦再答:可逆矩阵的行列式不等于零,它的各阶子行列式都有不为零的,即秩数=阶数,可以得到:可逆矩阵不论

求解大一线性代数:设n阶矩阵A的每行元素之和为1,则A必有一特征值为多少?

B第一列与各列相加能整理得1,……1,……1,……各行减第一行得到1,……0,……0,……则必有特正值1

高等代数(线性代数)设A为n阶实对称矩阵,证明:存在唯一n阶实对称矩阵B使得A=B的三次方

如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。

设n阶矩阵A,B有共同的特征值,且各自有n个线性无关的特征向量,则

(A)显然不对(B)不对(C)正确(D)尽管|A|=|B|,但前提与(C)矛盾选(C)再问:为什么A相似B再答:A,B有共同的特征值,且各自有n个线性无关的特征向量所以A,B都可对角化,且都相似于同一

设A为n阶可逆矩阵,则

C不对,因为此时只能用初等行变换才有相应结果

设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.

设k1Aα1+k2Aα2+…+knAαn=0则A(k1α1+k2α2+…+knαn)=0因为A可逆,等式两边左乘A^-1,得k1α1+k2α2+…+knαn=0由已知α1,α2,…αn线性无关所以k1

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

设A为n阶实矩阵,证明:若对于任意n维实列向量a,有a^TAa=0.则A为反对称矩阵 求问怎么证明

矩阵A=(aij)由于对任意的n维实列向量a成立,所以要在a上面做文章:令a=(0,...,1,...0)(a中第i个元素是1,其余的是0),代入可知aii=0令a=(...,1,...,1,.)(a

设A 是一个n ×n 实矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法,试证明其是线性空间

设V={f(A)|f(x)是实系数多项式}因为矩阵的加法和数乘满足线性空间的8条算律,所以,只需证明V对运算封闭即可.对V中任意f(A),g(A),则h(x)=f(x)+g(x)是实系数多项式,所以f