设a为n阶方阵其特征值分别为2 1 0 则 A 2E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:00:36
λ^2+2λ+1
显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值
设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,
A*=A的行列式乘以A的逆=(-1乘以2乘以-3)乘以A的逆=6倍的A逆3阶方阵A的特征值为-12-3,A逆的特征值为-1,1/2,-1/3,所以A*的特征值为-6,3,-2
设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值
A^-1的特征值是A的特征值的倒数:1/3,1/2,1/4再问:这是真的吗==这么简单
应该是|A^-1-E|吧,由题,|A^-1-E|=|A^-1-A*A^-1|=|(E-A)*A^-1|=|E-A|*|A^-1|,因为1是A的特征值,所以有|E-A|=0,所以|E-A|*|A^-1|
A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.
n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1
λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变
∵AX=0有非零解∴存在ε≠0,使Aε=0=0ε即A有特征值0
1.由已知,A+2E的特征值为4,3,2所以|A+2E|=4*3*2=242.A半正定3.A,B等价.
设a是A的任一一个特征值,则a^2-3a+2=0,从而a=1或2.进而A的特征值为1和2.
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
A的特征值为1,-1,2所以|A|=1*(-1)*2=-2所以A*的特征值为(|A|/λ):-2,2,-1所以(B)正确.
一定程度的分离性总是需要的(比较弱的分离性条件是模最大的特征值唯一),不然不可能保证对大多数初始向量都收敛,简单的例子是旋转变换.再弱一点分离性条件是模最大的特征值在不计重数的意义下唯一,这个时候λ^
必有一个特征值为零Ax=0有非零解表明A的秩
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.
第二个特征值如果是0,则结果为44