设a是m*n矩阵,则对任一n维向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:09:00
我刚刚当面点拨了你,你可以关闭问题了再问:我们在一起吧再答:你给我滚粗
AB的列向量可由A的列向量线性表示所以r(AB)
设ε1ε2ε3.εn是n维基本向量组.即每个εi=(0,0,...,0,1,0,...,0)^T,1在第i个位置.由已知条件,Aεi=0.所以A(ε1,ε2,ε3,.,εn)=O.即有AEn=O.所以
由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)
证明:因为任一个n维非零向量都是n阶矩阵A的特征向量,所以n维基本向量组ε1,ε2,...,εn也是A的特征向量.设Aεi=kiεi,i=1,2,...,n则A(ε1,ε2,...,εn)=(Aε1,
设v是n阶矩阵A的特征值由题意矩阵特征值对应的线性无关特征向量的个数和是n说明:1)矩阵可对角化2)A满秩由于特征向量空间的维数和是n那么其中一最大线性无关组是e1..en;e1..en是单位矩阵的列
只要C大于矩阵A的所有特征值的模就可以了.
由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵
就是证明他的加法和数量乘法也属于那个空间就可以了
初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B
证:因为m>n则r(A)再答:选择A再答:请采纳哦,谢谢如有疑问,我继续作答
R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.
如果A可逆的话是n*n的
AB是m阶方阵而r(AB)
任取n个线性无关的n维列向量b1、…、bn,令B=(b1,…,bn),则B是可逆矩阵.因为Abi=0,所以AB=0,两边右乘B^(-1),可得A=0.再问:是n维行向量吧再答:是n维列向量,n维列向量
由题意,n阶单位矩阵的n个列向量e1,e2,……,en都是Ax=0的解,而Aei就是A的第i个列向量,所以A=0
n=r(I)=r(AB)
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
m>n时rank(AB)
命题一和命题二的区别就是命题二是命题一的充分条件.命题二是充分必要的.再问:怎么说?