设A是对称矩阵,B是反对称矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:09:18
设a、b是n阶对称矩阵,试证明a+b也是对称矩阵

a[i][j]=a[j][i]b[i][j]=b[j][i]a+b=c则c[i][j]=a[i][j]+b[i][j]=a[j][i]+b[j][i]=c[j][i]所以c是对称矩阵,也就是a+b是对

设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵

写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a

设A是反对称矩阵,B是对称矩阵,证明A的平方是对称矩阵;AB-BA是对称矩阵

A=-A^t,B^t=BA^2=(-A)^t(-A)^t=(A^2)^t所以A^2为对称矩阵(AB-BA)^t=(AB)^t-(BA)^t=B^tA^t-A^tB^t=B(-A)+AB=AB-BA所以

若A是对称矩阵,B是反对称矩阵,AB-BA是否为对称矩阵?证明

证明:∵A是对称矩阵∴A^T=A∵B是反对称矩阵∴B^T=-B∴(AB-BA)^T=B^T*A^T-A^T*B^T=-BA-A(-B)=AB-BA∴AB-BA是对称矩阵证毕

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

有关于矩阵对称和反对称的证明题 :设A是反对称矩阵,B是对称矩阵.证明:

由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是

N阶对称矩阵问题 A B是两个N阶对称矩阵 证明 AB+BA是对称矩阵 AB-BA是反对称矩阵

AB是两个N阶对称矩阵A^T=A,B^T=B(AB+BA)^T=(AB)^T+(BA)^T=B^TA^T+A^TB^T=AB+BA故AB+BA是对称矩阵同样(AB-BA)^T=(AB)^T-(BA)^

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

若矩阵A既是对称阵,又是反对称阵,则A一定是什么矩阵?

A一定是零矩阵,A的转置=A,A的转置=-A,故A=-A,2A=O,A=O.

若A对称矩阵,B是反对称矩阵,AB-BA是对称矩阵吗?怎么证明?

题:若A对称矩阵,B是反对称矩阵,AB-BA是对称矩阵吗?怎么证明?由已知,A=A',B=-B'故(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA即AB-BA是对称矩阵.

已知A是一个n阶对称矩阵,B是一个n阶反对称矩阵,证明AB-BA是一个对称矩阵,AB+BA是一个反对称矩阵

首先要知道对称矩阵和反对称矩阵的定义,对称举证,就是A的转置等于A;反对称矩阵就是B的转置等于-B,由于证明过程要用到高等数学证明符号,我把证明过程的截图发给你吧,证明过程的截屏你可以放大看:

设A为n阶对称矩阵,B为n阶反对称矩阵证明:1)AB-BA为对称矩阵 2)AB+BA为反对称矩阵

(1)因为(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA,故AB-BA对称(2)(AB+BA)'=B'A'+A'B'=-BA+A(-B)=-(AB+BA)故AB+BA反对称

设A是对称矩阵,B是反对称矩阵,证明A∧(-1)B∧2-B∧2A∧(-1)是反对称矩阵

A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

设A是反对称矩阵,B是对称矩阵,证明:(1)A²是对称矩阵,(2)AB-BA是对称矩阵

(1)(A²)^T=(A^T)²=(-A)²=A²所以A²是对称矩阵;(2)(AB-BA)^T=(AB)^T-(BA)^T=B^TA^T-A^TB^T

a是反对称矩阵 b实对称矩阵 证明a^2实对称矩阵

因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件

设AB是两个反对称矩阵,证明AB是对称矩阵充要条件是AB=BA

AB是对称矩阵<=>(AB)'=AB<=>B'A'=AB<=>BA=AB即AB可交换再问:AB是反对称矩阵呢!!!

求证:若A,B都是n阶对称矩阵,则2A-3B也是对称矩阵,AB-BA是反对称矩阵

若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的

设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA

证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(