设A是秩为3的5*4矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:39:31
设A是3*5的矩阵,b是2*4的矩阵且乘积矩阵acb有意义,则c是

5*2ac有意义则c必然是5行cb有意义则c是2列

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

设A为4阶矩阵,|A|=1/3 求|3A^*-4A^(-1)| A^*是A的伴随矩阵

先把行列式中A^-1与A*化成一致的形式因为|A|=1/3所以A可逆,且|A^-1|=1/|A|=3由AA*=|A|E得A*=|A|A^-1=(1/3)A^-1所以有|3A*-4A^-1|=|A^-1

设m×n是矩阵A的秩为n,证明:矩阵A^TA为正定矩阵

首先,因为(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.又对任一非零向量X,由于r(A)=n,所以AX≠0.(否则AX=0有非零解)所以X'(A'A)X=(AX)'(AX)>0.所以A'

线性代数设A是秩为2的3阶实对称矩阵,且A^2+5A=0,则A的特征值为谢谢

因为A^2+5A=0所以A(A+5E)=0所以A的特征值只能是0或-5.而A是秩为2的3阶实对称矩阵所以A的特征值为0,-5,-5.再问:为啥A(A+5E)=0所以A的特征值只能是0或-5.再答:若a

请教线性代数问题设5阶A有一个4阶非0子式, A*为A的伴随矩阵, P,Q为5阶初等矩阵, 则PA*Q 的秩是_____

首先PQ为初等阵,根据矩阵秩的性质矩阵A的秩和PAQ的秩相同,所以题目所说PA*Q的秩和A*的秩相同那么A*的秩和A秩是有关系的因为A有一个4阶非0子式,所以A的秩为4或者5根据性质,如果A满秩,那么

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

设A为3*4矩阵,B为5*2矩阵且乘积矩阵ACtBt有意义,则C为()矩阵?

两个矩阵相乘有意义的条件是:前一个矩阵的列数等于后一个矩阵的行数例如:A[m*n]B[n*k]=C[m*k]即m行n列矩阵乘以n行k列矩阵得到m行k列矩阵所以由上得知,C行数等于A列数等于4(AC有意

是线性代数的矩阵设A为3阶矩阵,=1/2,(2A)-1--5A*!表述A得行列式,(2A)-1表示(2A)得逆矩阵,A*

(2A)-1=1/2×(A)-1AA*=|A|E,所以,A*=1/2×(A)-1|(2A)-1-5A*|=|2(A)-1|=2^3×|(A)-1|=8×1/|A|=16

设A 为4 阶矩阵,|A|=3,则其伴随矩阵A*的行列式|A*|=?

|AA*|=|A||A*|=||A|E||;//现在都是数了,不是矩阵了,所以可以用代数方法做了|A|=3是数,E是单位矩阵(也是上三角行列式),那么||A|E|=3*3*3*3=81;//上三角行列

线性代数的问题1.设A是3阶实对称矩阵,B=A^5-4A^3+E,其中E为3阶单位矩阵.为什么由A是实对称矩阵可知B是实

1.B^T=(A^5-4A^3+E)^T=...自己继续写下去看看,是不是等于B就行了2.如果x1,x2,...,xn正交,且非零c1x1+c2x2+...+cnxn=0用xk对两端做内积就得到ck=

设λ是矩阵A为的特征值,则矩阵4A^3-2A^2+3A-2E的一个特征值为

这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.

设A是5阶矩阵,A的平方等于零向量,则A的伴随矩阵的秩为多少?

A的伴随阵的秩只有三种情况.rA=n时,rA*=n;rA=n-1时,rA*=1;rA

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

线性代数:设A为m x n矩阵且秩(A)=r的充要条件是

D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.