设A相似于(1 0 0,0 1 0,0 0 -1),求A^10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:46:47
设2阶矩阵A相似于矩阵B=(2,0 2,-3) E为2阶单位矩阵 则与矩阵E-A相似的矩阵是

因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24

设3阶方阵A的特征值为1,2,3,且A相似于B,则行列式|B^2+E|=?

对的.A的特征值为1,2,3因为B与A相似所以B的特征值为1,2,3所以B^2+E的特征值为(λ^2+1):2,5,10所以|B^2+E|=2*5*10=100.

设n阶方阵A与B中有一个是非奇异的,求证矩阵AB相似于BA

n阶方阵A与B中有一个是非奇异的,不妨设A非奇异,则BA=A^(-1)ABA可见AB相似于BA

设AB都是n阶矩阵,且|A|不等于0证明AB与BA相似

因为|A|≠0所以A可逆所以A^-1(AB)A=BA所以AB与BA相似.再问:还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1p1^T=(122)p2^T=(2-21)p3^T=(-2-12)球A还

设A,B都是n阶方阵,且|A|不等于0,证明AB与BA相似.

A可逆,A^(-1)ABA=BA,因此AB与BA相似

设矩阵A={ 0 0 1 b 1 a 1 0 0}相似于对角阵A,求a,b应满足的条件.

|A-λE|=-λ01a1-λb10-λ=(1-λ)[(-λ)^2-1]=(1-λ)^2(1+λ).所以A的特征值为1,1,-1.因为A有3个线性无关的特征向量,所以属于特征值1的线性无关的特征向量有

老师,设A,B为n阶矩阵,A~B,证明(1) 若A,B都可逆,则A逆相似于B逆.

A~B=>存在可逆矩阵C使得A=C^-1BC若A,B都可逆,则A^-1=(C^-1BC)^-1=C^-1(B^-1)CC^-1可逆故A^-1~B^-1

设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

设A为n阶实矩阵,证明:若A^k=E,则A相似于对角阵

可以用稍微初等一点的技术在复数域上上三角化总是可以的,并且特征值的次序可以任意指定那么就先上三角化到diag{A1,A2,...,Am}+N,每一块Ai都恰有一个特征值,且不同的块对应不同的特征值,N

设2阶矩阵A的行列式为负数,证明A可相似于一对角阵

结论仅对实矩阵成立,此时两个特征值不相等.

刘老师求帮忙,设A=[1 0 1 0 2 0 1 0 1],求A的特征值跟特征向量,并判断A是否相似于对角矩阵

λ1=0,λ2=λ3=20的特征向量(1,0,-1)^T2的特征向量(1,0,1)^T,(0,1,0)^TA相似于对角阵.(所有的实对称矩阵都相似于对角阵)

设A与B正交相似,B与C正交相似,证明A与C正交相似

存在正交方阵D,E,使D‘AD=BE'BE=C则E'D'ADE=E'BE=C而E'D'=(ED)'故AC正交相似

设矩阵B=001010100.已知矩阵A相似于B,则秩(A-2E)与秩(A-E)之和等于(  )

因为矩阵A相似于B,于是有矩阵A-2E与矩阵B-2E相似,矩阵A-E与矩阵B-E 相似,且相似矩阵有相同的秩,而:r(B-2E)=r−2010−1010−2=3,r(B-E)=r−10100

设矩阵A=1 0 0则与A相似的矩阵是( ) 010 002

A如果两个矩阵的约旦标准型(对角标准型如果有的话)是一样的,则这两个矩阵一定是相似的.这是一个充分必要条件.再问:答案是B再答:A矩阵看不懂,你再写一遍再问:矩阵A=100010002再答:答案是B若

设矩阵A相似于对角矩阵diag(2,2,2,-2),则det(1/4A*+3I)

因为A相似于对角矩阵diag(2,2,2,-2)所以A的特征值为2,2,2,-2|A|=-16所以A*的特征值为(|A|/λ):-8,-8,-8,8所以1/4A*+3I的特征值为(1/4λ+3):1,

设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵

因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x

设A为实对称矩阵,且A正交相似于B,证明B为实对称矩阵.

由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,

关于相似三角形设一次函数y=1/2x+2的图像为直线l,l于x轴、y轴分别交于点A、B.直线m过点(-3,0),若直线l

设l,m交于P,m与轴、y轴交于C,D1.角APC90,则三角形APC为钝角三角形而三角形BDP为锐角三角形不合题意综上所述m:y=2x+6或y=-2x-6

设矩阵A与B相似,证明A的倒置与B的倒置相似

A与B相似,则存在可逆矩阵P满足P^-1AP=B等式两边取转置得P^TA^T(P^-1)^T=B^T由于(P^-1)^T=(P^T)^-1,所以有P^TA^T(P^T)^-1=B^T令Q=(P^T)^