设bn=2的n次方分之an证明:数列bn是等差数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:34:08
孩子,这样打题目也只有我大概看得懂.次方要用^a的n+1我用An+1表示An+1=2An+3^(n-1)An+1-[3^﹙n+1)]/3=2[An-(3^n)/3]令Cn=An-﹙3^n﹚/3所以C1
不好意思,你的题应该出错了应该是An+1=2An+2^n(^代表2的次方)这样算来对第一题:证明只需证明Bn+1-Bn为常数即可.证明:Bn+1-Bn=An+1/2^(n+1)-An/2^n=(An+
Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2
证:由数列{an}是等差数列,得an=a1+(n-1)d,其中a1为首项,d为公差.b1b2b3=[(1/2)^(a1)][(1/2)^(a1+d)][(1/2)^(a1+2d)]=(1/2)(a1+
先求an令n=1,a1=s1=1;当n>=2时,an=Sn-Sn-1=(n-2)^2-(n-3)^2(注a^b表示a的b次方)=2n-5(注意,数列an不是一个等差数列,首项不符合上面的通项公式,只是
先证明bn=b^n/2^n=(b/2)^n(1)bn-1=(b/2)^(n-1)(2)(1)÷(2)bn/bn-1=b/2,是定值所以bn是等比数列计算anan=2an-1+2^(n+1)an=2an
n=an/2^(n-1)得an=bn*2^(n-1)a(n-1)=b(n-1)*2^(n-2)由an=2a(n-1)+2^(n-1),得bn*2^(n-1)=2*b(n-1)*2^(n-2)+2^(n
a(n+1)=(n+1)/n*an+(n+1)/2^n邻边除以n+1a(n+1)/(n+1)=an/n+1/2^n即b(n+1)-bn=1/2^n所以bn-b(n-1)=1/2^(n-1)……b2-b
an+1=(an+1-an)+(an-an-1)+...(a2-a1)+a1=2^n+2^(n-1)+...+2+1=2*(2^n-1)=2^(n+1)-2+1所以an=2^n-1因为bn=n*2^n
a(n+1)=2an+2^na(n+1)/2^n=2an/2^n+1a(n+1)/2^n=an/2^(n-1)+1a(n+1)/2^n-an/2^(n-1)=1,为定值.a1/2^(1-1)=1/1=
由于bn=(2n-1)*[(4/5)^n]则:b(n+1)=[2(n+1)-1]*[(4/5)^(n+1)]=(2n+1)*[(4/5)^(n+1)]=[(8n+4)/5]*[(4/5)^n]则:b(
(1)Sn=2an-3nn=1时,S1=a1,故有:a1=2a1-3,a1=3n>=2时,an=Sn-S(n-1)=2an-3n-[2a(n-1)-3(n-1)]=2an-2a(n-1)-3即:an=
a(n)=3^(n-1)-2a(n-1)a(n)/3^n=(1/3)-(2/3)a(n-1)/3^(n-1)a(n)/3^n-1/5=-(2/3)[a(n-1)/3^(n-1)-1/5]b(n)=-(
(1)这道题很基础,希望楼主可以自己独立掌握Sn=2An-2^nS(n-1)=2A(n-1)-2^(n-1)两式相减得An-2A(n-1)=2^(n-1)等式两边同时除以2^(n-1)得An/[2^(
a(1)=1a(n+1)=2a(n)+2^na(n+1)/2^n=a(n)/2^(n-1)+1b(n+1)=b(n)+1,所以b(n)是等差数列且公差为1,c(n)=c(1)+n-1=a(2)/2+n
an+1=[(n+1)/n]*an+2(n+1),an+1/(n+1)=an/n+2bn=an/nbn+1=bn+2{bn}是等差数列b1=a1=1bn=2n-1an=n*bn=n(2n-1)a8=1
你错了,答案是2^n分之an+1---2^n--1分之an=1现在我们在上式左右两边乘一个常数公差就改变了,你乘的常数其实是2分之1而题目中是bn=an/2的n-1次方你当做是bn=an/2的n次方所
a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n
/>1,A(n+1)=2An+2^n,两边除以2^n得A(n+1)/2^n=An/2^(n-1)+1,即B(n+1)=Bn+1,Bn是等差数列.2,B1=A1=1,则Bn=n,即An=n2^(n-1)
=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>