设D:1≤x² y²≤4.求二重积分∬dxdy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:00:57
概率论方差计算设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,求D(X-Y).

回答:设Z=-Y,于是D(Z)=D(-Y),D(X-Y)=D(X)+D(-Y)=D(X)+D(Z)=1+2=3.

求二重极限lim[xy/(1+x^2+y^2)],x→0,y→0.求详细步骤

lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0

设X与Y相互独立 D(X)=1 D(Y)=2 求协方差cov(2X+Y,X-2Y)

用公式Cov(aX+bY,cW+dZ)=acCov(X,W)+bcCov(Y,M)+adCov(X,z)+bdCov(Y,Z)把数字往里代就可以了~还有Cov(X,X)=D(X)

概率论与数理统计:设随机变量x与y相互独立,且d(x)=1,d(y)=2,求d(x-y)

有公式的D(X+_Y)=DX+DY+_2cov(X,Y)既然X,Y独立,协方差必为0D(X-Y)=DX+DY=3

设随机变量X,Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?

设随机变量X,Y相互独立,且E(X)=E(Y)=1,D(X)=D(Y)=1,试求E[(X+Y)^2].

E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+

设x=1+t²、y=cost 求 dy/dx 和 d²y/d x²

dx/dt=2tdy/dt=-sin(t)dy/dx=-sin(t)/2t同理:d²y/dx²=-cos(t)/2

设两随机变量(X,Y)在区域D上均匀分布,其中D={(x,y):|x|+|y|≤1}.又设U=X+Y,V=X-Y,试求:

积分变量就是1/2,还非要积出来吗,如果非求结果那你就在Y=u-X和Y=-1-X之间定积分区间,(以第一个为例)有点麻烦用几何意义多简单,你那样太麻烦了刚才把u弄错了,我直接当成是上半部分了,不好意思

二重极限求法求二重极限时若函数是连续的,那么能令y=x后把y带入算极限吗?

这样求是不行的,如定义当(x,y)不为(0,0)时,f(x,y)=x^2*y^2/(x-y),当为(0,0)点时,f(x,y)=0,则原函数在原点的极限为0,而不可以直接令x=y带入来求

设x=1+t²、y=cost 求 dy/dx 和 d²y/d x².

dy/dx=(dy/dt)/(dx/dt)=-sint/2td²y/dx²=d(dy/dx)/dx=[d(dy/dx)/dt]/(dx/dt)=d(-sint/2t)/dt/2t=

设平面区域满足0<y<根号下2x-x^2,0<x<1则∫∫f(x,y)dxdy在极坐标下的二重积

会画图就是了用极坐标,积分区域被y=x分开为两部分D₁是个等腰三角形:y=0、x=1、y=xD₂是个弓形:y=x,y=√(2x-x²)化为极坐标,D₁:θ

二重积分∫∫Df(x,y)dxdy,其中D为X^2+Y^2≤4所确立的在第一象限中的区域,求二重积分化为极坐标下的二重积

积分区域是一个圆心在原点、半径为2的1/4圆原积分=∫dθ∫f(rcosθ,rsinθ)rd

设x²+(y-1)²≤4,求(x+y-1)/(x-y+3)的最值.

唔.这个题目不算简单吧.(x+y-1)/(x-y+3)=(x-y+3+2y-2)/(x-y+3)=1+(2y-2)/(x-y+3).接下来用换元法,另m=x-y,n=y.则题目就变成:设(m+n)平方

设(X,Y)在矩形域D上服从均匀分布,其中D:x^2≥y,0≤x≤1,y≥0,求(X,Y)的边缘概率密度

如图,有不清楚请追问.请及时评价.再问:D的面积算出来就是1/3么,我算出来是负的1/3再答:面积一定是正的,不会是负值。

设 D:(x-2)²+(y-1)²≤1,比较I₁=∫∫D(x+y)dσ,I₂

这个双重积分,要利用双重积分的性质来解答.主要是利用单调性

求二重不定积分 x/(x^2+y^2) dx dy

结果应该是C1x+C2+1/2y*log(x^2+y^2)+x*atan(y/x)希望采纳