设f(t)是以T=2为周期的半矩形波函数,且在一个周期内的表达式是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:48:51
设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx (上限是T,下限是0)

设F(a)=:∫(a为下限,a+T为上限)f(x)则F'(a)=f(a+T)-f(a)=f(a)-f(a)=0这说明F(a)=∫(a为下限,a+T为上限)f(x)是一个常数函数所以F(a)=F(0)=

设F(X)是以T为周期的函数,则函数F(x)+F(2x)+F(3x)+F(4x)的周期是什么?

T是F(x)+F(2x)+F(3x)+F(4x)的一个周期因为T是F的周期,所以2T、3T、4T也是F的周期F(x+T)+F(2(x+T))+F(3(x+T))+F(4(x+T))=F(x+T)+F(

设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx

证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx∫(a~a+T)f(x)dx=∫(a~0)f(x)dx+∫(0~T)f(x)dx+∫(T~a+T)f(x)dx对∫(T~a+T)f(x)dx

设f(x)是周期为2的连续函数,证明G(x)=∫(上x下0)[2f(t)-∫(上t+2下t)f(s)ds]dt是周期为2

G(x)=∫(0,x)[2f(t)-∫(t,t+2)f(s)ds]dt证明:因为f(x)是周期为2的连续函数,f(x)=f(x+2)又∫(t,t+2)f(s)ds=∫(t,2)f(s)ds+∫(2,t

设f(x)是周期为2T的连续函数,证明,存在ζ∈[0,T]使f(ζ)=f(x+ζ)

构造辅助函数g(x)=f(x+T)-f(x),则g(T)=f(2T)-f(T),g(0)=f(T)-f(0),由于f(x)以2T为周期,故f(0)=f(2T),所以g(T)=-g(0).若g(T)=g

设f(x)是以2派 为周期的连续函数,证明:存在x,使f(x+派)=f(x.)

考察函数g(x)=f(x+π)-f(x),由于f(x)是以2π为周期为周期函数,f(x+2π)=f(x),因此g(x+π)=f(x+2π)-f(x+π)=f(x)-f(x+π)=-g(x)对任意实数x

设f(x)是以T为周期的函数,a为任意正实数,证明f(ax)是以T/a为周期的函数.

f(x)是以T为周期的函数那么f(x+T)=f(x)所以f(ax+T)=f(ax)而f(ax+T)=f[a(x+T/a)]=f(ax)即f(ax)中,任意的x增加T/a单位,函数值重复∴f(ax)是周

设f(x)是以周期为T的函数,则f(x)+f(2x)+f(3x)+f(4x)的周期是什么.

周期是T,因为这四个函数的周期是T/4,3/T,2/T和T,要想满足整个式子都有f(x+T)=f(x),这个周期久应该同时是那四个周期的最小倍数,也就是T.

高数题解设f(x)以T(>0)为周期,求函数的周期.f(x+2)

周期不变,还是T,只是图像延X轴向左移动了两个单位

设f(x)是以t为周期的连续函数,证明f(x)在a到a+t上的定积分的值与a无关.

设L(a)=f(x)在a到a+t上的定积分则L'(a)=f(a+t)-f(a)=f(a)-f(a)=0所以f(x)在a到a+t上的定积分的值与a无关.

设f(x)是以T为周期的连续函数,∫(下限a,上限x)f(t)dt以T为周期,求∫(下限0,上限T)f(x)dx=?

设f(x)的原函数是F(x),∫(下限a,上限x)f(t)dt=F(x)-F(a)=F(x+T)-F(a)F(x+T)=F(x),F(T)=F(0)∫(下限0,上限T)f(x)dx=F(T)-F(0)

设函数f(x)是以T为周期的函数,证明f(ax+b)(a、b均为正数)也是周期函数,并求出其周期

f(x)=f(x+t)f(ax+b)=f(ax+b+t)=f[a(x+t/a)+b]所以是周期=t/|a|的周期函数

设f(x)是以T为周期的连续函数,即f(x+T)=f(x),

∫(a,a+T)f(x)d(x)=∫(a,0)f(x)d(x)+∫(0,T)f(x)d(x)+∫(T,a+T)f(x)d(x)上式右边最后一个积分中,令x=T+t,有∫(T,a+T)f(x)d(x)=

设f(x)是以T为周期的函数,λ是任意正实数,证明f(λx)是以T/λ为周期的函数

因为f(x)=f(x+T)所以f(入x)=f(入x+T)又有入>0则入x+T=入(x+T/入)证毕再问:提出来得到f(x+T)=f(λ(x+T/λ))然后呢?再问:后面不明白,我已经做到这一步了再答:

设f(x)是以T为周期的函数,则函数f(x)十f(2x)+f(3x)十f(4x)的周期是多少.

f(2x)周期是T/2f(3x)周期是T/3f(4x)周期是T/4所以就是求T,T/2,T/3,T/4的最小公倍数即分子的最小公倍数和分母的最大公因数T就是T/1所以分子的最小公倍数是T分母的最大公因

证明,若函数f(x)是以T为周期的周期函数,则函数F(x)=f(ax),(a>0)是以T/a为周期的周期函数.

证明由F(x)=f(ax)知F(x+T/a)=f(a(x+T/a))=f(ax+T)由函数f(x)是以T为周期的周期函数故F(x+T/a)=f(a(x+T/a))=f(ax+T)=f(ax)而F(x)

设f(x)为周期函数,周期为T,试证函数f(wt+y)(y>0)是以T/w为周期的周期函数

我们知道:一个周期函数有无数个周期,而我们所谓的周期则是指最小的那个正周期而我们要求的周期也是指最小正周期设f(wx+y)的周期为T'(这里我设的T'就是一般的周期,我下面也就是求T'正的最小值),则