设f(x)在x=0连续,limf(h^2)╱h^2=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:40:06
设F(x)在x=0处连续,已知当x趋近于0时,lim(1+f(x)/x)^1/sinx=e^2,求当x趋近于0时,lim

解F(x)在x=0处连续x→0,1/sinx~1/xlim(1+f(x)/x)^1/sinx=lim(1+f(x)/x)^1/x=lim(1+f(x)/x)^x/f(x)*f(x)/x*1/x=e^l

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导

lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导

设f(x)在x=0连续,且lim(x+sinx)/ln[f(x)+2]=1x趋近于0,则f'(0)?

分子趋于0+0=0为了使极限=1,只可能ln(f(0)+2)=0f(0)=-1因为0/0,洛必达=lim(1+cosx)/[1/(f(x)+2)*f'(x)]分子->1+1=2极限为1,所以分母也应该

设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续

个人认为没必要先证limf(x)存在,将其作为一致连续性的推论更合适(用Cauchy收敛准则).f'(x)在(0,1]连续,lim(√x)f'(x)存在,可得(√x)f'(x)在(0,1]有界,设有|

设函数f(x)在x=0连续,若x趋于0时,lim f(x)/x存在,则f'(0)=多少?

因为f(x)在x=0连续,因此lim(x→0)f(x)=f(0),因为lim(x→0)f(x)/x存在,即lim(x→0)[f(x)-0]/(x-0)存在,且分母极限为0,因此分子极限必为0,即lim

高数 设f(x)具有连续的二阶导数,且lim[f(x)/x]=0,在x趋向于0的时候.且f’‘(x)=4,求lim[1+

因为f''(x)=4则f'(x)=4x+af(x)=2x^2+ax+b因为lim[f(x)/x]=0可知f(0)=0则b=0则f(x)/x=2x+a又lim[f(x)/x]=0则a=0则f(x)=2x

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.

1、f(0)=limf(x)=limf(x)/x^2*limx^2=1*0=0,于是f'(0)=lim[f(x)-f(0)]/x=limf(x)/x^2*x=limf(x)/x^2*limx=1*0=

设函数f(x)在x=0处连续,若f(x)=g(x)/sinx,(x≠0),f(x)=2(x=0),则lim(x→0)g(

D太简单了你只要把g(x)想成g(x)=2x就好了想法的由来:在(x→0)sinxへx

设f'(x)在[a,b]上连续,证明:lim(λ→+∞)∫(a,b)f(x)cos(λx)dx=0

利用分部积分∫(a,b)f(x)cos(λx)dx=1/λ*∫(a,b)f(x)dsin(λx)=1/λ*{[f(x)sin(λx)]|(a,b)-∫(a,b)f'(x)sin(λx)dx}因f'(x

设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界

设lim[x→0]f(x)=a.对ε=1,存在1>δ>0,当x∈(0,δ)时,|f(x)-a|

高数极限求导 设函数f(x)在x=a连续,有lim(x→a+) f'(x)/(x-a)=1,lim

-_-||大神您也有不会的啊再答:再答:��������û�����⣿再答:��Ŀ���Ӧ��ѡc再答:�Ǽ�ֵ�㣬�ǹյ�再答:再答:����������һ��再答:����再问:�ţ�再答:���

设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’

当x->0时,0.5*x^2是无穷小量,要使lim[f''(x)+1]/0.5*x^2的极限存在且等于2,则f''(x)+1也必是无穷小量,即lim[f''(x)+1]=0

设f(x)在x=0处连续,且lim (f(x)-1)/x=-1,x→0.,求f(0)

因为x→0时,lim(f(x)-1)/x存在,必然x→0时,lim(f(x)-1)=0,(否则已知的极限不存在)又因为f(x)在x=0处连续,所以limf(x)存在,且等于f(0)于是lim(f(x)

设函数f(x)连续,lim((f(x)/x)-1/x-(sinx/x^2))=2,f(0)=?

lim((f(x)/x)-1/x-(sinx/x^2))=2lim((f(x)/x)-1/x-(sinx/x^2))*x=lim2x=0即lim(f(x)-1-sinx/x)=0即liimf(x)-1

设函数f(x)在区间[a,b]上连续,则lim(x->a)∫(a->x)f(t)dt=____,lim(x->a)1/(

1、0.2、f(a)再问:��ã�~������дһ�¹��ô~~лл�ˣ�

高数极限问题【设f(x)在x=0连续,且lim(x趋于0)f(x)/|x| =1,则( ) 】

由那个极限式子有x→0时0=limf(x)=f(0)所以limf(x)/|x|=lim(f(x)-f(0))/|x|=1>0由极限的保号性有,x=0的某去心领域内有(f(x)-f(0))/|x|>=0

高等数学 设f(x)在x=e处有连续的一阶导数,f'(e)=-2(e^-1)则lim(x→0+

x→0时,1/2√x→∞.要把sin√x与1/√x合在一起讨论,这是个等价无穷小再问:为什么趋于无穷啊?不好意思我高数刚学很多不明白,能解释详细点吗谢谢再答:分子是1,分母趋向于0,分式不就是趋向于∞

设函数f(x)在x=2处连续,且lim(x→2)f(x)/(x-2)(x→2)=3,求f'(2).

答案是3么由已知条件知道f(x)与x-2是同阶无穷小,所以f(2)是0又因为连续已知条件其实就是x=2的导数再问:是3,但是为什么f(2)是0呢?再答:f(x)与x-2是同阶无穷小