设f(x)在x=0连续,limf(h^2)╱h^2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:40:06
解F(x)在x=0处连续x→0,1/sinx~1/xlim(1+f(x)/x)^1/sinx=lim(1+f(x)/x)^1/x=lim(1+f(x)/x)^x/f(x)*f(x)/x*1/x=e^l
lim(x→0)f(x)/x存在说明x→0,limf(x)=f(0)=0所以limf(x)/x=lim[f(x)-f(0)]/x=f'(0)所以在x=0处可导
分子趋于0+0=0为了使极限=1,只可能ln(f(0)+2)=0f(0)=-1因为0/0,洛必达=lim(1+cosx)/[1/(f(x)+2)*f'(x)]分子->1+1=2极限为1,所以分母也应该
个人认为没必要先证limf(x)存在,将其作为一致连续性的推论更合适(用Cauchy收敛准则).f'(x)在(0,1]连续,lim(√x)f'(x)存在,可得(√x)f'(x)在(0,1]有界,设有|
因为f(x)在x=0连续,因此lim(x→0)f(x)=f(0),因为lim(x→0)f(x)/x存在,即lim(x→0)[f(x)-0]/(x-0)存在,且分母极限为0,因此分子极限必为0,即lim
因为f''(x)=4则f'(x)=4x+af(x)=2x^2+ax+b因为lim[f(x)/x]=0可知f(0)=0则b=0则f(x)/x=2x+a又lim[f(x)/x]=0则a=0则f(x)=2x
1、f(0)=limf(x)=limf(x)/x^2*limx^2=1*0=0,于是f'(0)=lim[f(x)-f(0)]/x=limf(x)/x^2*x=limf(x)/x^2*limx=1*0=
D太简单了你只要把g(x)想成g(x)=2x就好了想法的由来:在(x→0)sinxへx
利用分部积分∫(a,b)f(x)cos(λx)dx=1/λ*∫(a,b)f(x)dsin(λx)=1/λ*{[f(x)sin(λx)]|(a,b)-∫(a,b)f'(x)sin(λx)dx}因f'(x
设lim[x→0]f(x)=a.对ε=1,存在1>δ>0,当x∈(0,δ)时,|f(x)-a|
-_-||大神您也有不会的啊再答:再答:��������û�����⣿再答:��Ŀ���Ӧ��ѡc再答:�Ǽ�ֵ�㣬�ǹյ�再答:再答:����������һ��再答:����再问:�ţ�再答:���
当x->0时,0.5*x^2是无穷小量,要使lim[f''(x)+1]/0.5*x^2的极限存在且等于2,则f''(x)+1也必是无穷小量,即lim[f''(x)+1]=0
因为x→0时,lim(f(x)-1)/x存在,必然x→0时,lim(f(x)-1)=0,(否则已知的极限不存在)又因为f(x)在x=0处连续,所以limf(x)存在,且等于f(0)于是lim(f(x)
lim((f(x)/x)-1/x-(sinx/x^2))=2lim((f(x)/x)-1/x-(sinx/x^2))*x=lim2x=0即lim(f(x)-1-sinx/x)=0即liimf(x)-1
1、0.2、f(a)再问:��ã�~������дһ�¹��ô~~лл�ˣ�
由那个极限式子有x→0时0=limf(x)=f(0)所以limf(x)/|x|=lim(f(x)-f(0))/|x|=1>0由极限的保号性有,x=0的某去心领域内有(f(x)-f(0))/|x|>=0
x→0时,1/2√x→∞.要把sin√x与1/√x合在一起讨论,这是个等价无穷小再问:为什么趋于无穷啊?不好意思我高数刚学很多不明白,能解释详细点吗谢谢再答:分子是1,分母趋向于0,分式不就是趋向于∞
答案是3么由已知条件知道f(x)与x-2是同阶无穷小,所以f(2)是0又因为连续已知条件其实就是x=2的导数再问:是3,但是为什么f(2)是0呢?再答:f(x)与x-2是同阶无穷小