设f(x)的二阶导数在(2,4)上连续,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/06 10:21:26
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

设函数f(x)在区间(a,b)内二阶可导,f(x)的二阶导数大于等于0,证明:任意x,x0属于(a,

利用泰勒中值定理f(x)=f(x0)+f'(x0)(x-x0)+f''(t)(x-x0)²/2!t∈(x,x0)因为f(x)的二阶导数大于等于0,所以f(x)大于等于f(x0)+f(x0)的

设y=f(x^2-x),f二阶可导,求y的二阶导数

y'=f'*(x^2-x)'=f'*(2x-1);y''=f''*(2x-1)'+f'*(2x-1)=2f''+(2x-1)f';以上为正确答案及过程~

设函数f(x)在x=Xo处具有二阶导数f''(Xo),证明{f(Xo+h)+f(Xo-h)-2f(Xo)}/h^2的极限

先用一次洛必达法则,原式=lim(h->0)[f'(xo+h)-f'(xo-h)]/2h=lim(h->0)[f'(xo+h)-f'(xo)+f'(xo)-f'(xo-h)]/2h=1/2lim(h-

设函数f(x)在〔1,2〕上有二阶导数,且f(1)=f(2)=0,又F(x)=(x-1)^2f(x),那么F(x)的二阶

证明:F(x)=(x-1)²f(x),显然F(1)=F(2)=0,F(x)满足罗尔定理则存在ξ1∈(1,2),使得F'(ξ1)=0又F'(x)=2(x-1)f(x)+(x-1)²f

设f(x)在点a的某领域内具有二阶连续导数,求

首先要说明:不是求“在x→0时的极限值”,而是求“在h→0时的极限值”因为设f(x)在点a的某领域内具有二阶连续导数,所以:lim(h→0){[f(a+h)+f(a-h)-2f(a)]/h^2}.是(

若在区间(a,b)内,函数f(x)的一阶导数f'(x)>0,二阶导数f''(x)

选B、单调增加,曲线上凹因为二阶导0为单调上升再问:你确定?。。。再答:我确定。

高数 设f(x)具有连续的二阶导数,且lim[f(x)/x]=0,在x趋向于0的时候.且f’‘(x)=4,求lim[1+

因为f''(x)=4则f'(x)=4x+af(x)=2x^2+ax+b因为lim[f(x)/x]=0可知f(0)=0则b=0则f(x)/x=2x+a又lim[f(x)/x]=0则a=0则f(x)=2x

设F(X)在点X0的某邻域内二阶可导,且F(X0)的导数等于0,则F(X0)的二阶导数大于0是F(X0)为F(X)极小值

选B高数同济五版上册155页定理3(第二充分条件)当F(X0)的二阶导数=0,F(X0)可能为F(X)极小值、极大值、也可能没有极值因此必要条件不成立,选B充分条件

设f''(x)存在,求下列函数的二阶导数d^2y/dx^2

(1)y=f(x)d^2y/dx^2=d(f'(x))/dx=f''(x)(2)y=ln[f(x)]dy/dx=f'(x)/f(x)d^2y/dx^2=d[f'(x)/f(x)]/dx=[f''(x)

设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²

用微分公式,其中的有限增量公式,由于f(x)在x0邻域二阶可导,必定一阶可导,因此有f(x0+h)-f(x0)=f'(x0)h+o(h).同理f(x0)-f(x0-h)=f'(x0)h+o(h).因此

设f(x)在区间[a,b]上具有二阶导数,且f'(a)f'(b)>0试证明

此立论正确吗?举例:f(x)=x²,f(x)在区间[1,2]上有二阶导数,且f'(1)f'(2)>0,但在给定区间内不存在c点能使f(c)=0,也不存在d点使f''(d)=0;

设Y=lnx/f(x),f(x)二阶可导,f(x)不等于零,求y的二阶导数

Y'=[f(x)/x-f'(x)lnx]/f²(x)=1/[xf(x)]-f'(x)lnx/f²(x)Y''=-(f+xf')/(x²f²)-[(f''lnx+

设f(X)的二阶导数存在,求y=f(Inx)的二阶导数.

y'=[f(lnx)]'=f'(lnx)*(lnx)'=f'(lnx)/xy"=(y')'=[f'(lnx)/x]'={[f'(lnx)]'*x-(x)'f'(lnx)}/(x^2)=[f"(lnx)

设f''(x)存在,求y=f(e^-x) 的二阶导数

复合函数求导问题.y'=f'(e^-x)*e^(-x)*(-x)'=-e^(-x)f'(e^-x)y''=-{[e^(-x)]'*f(e^-x)+e^(-x)*[f'(e^-x)]'}=e^(-x)f