设fx在ab上连续 ex至少存在两个不同的零点

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/04 02:21:00
设函数f(x)在(a,b)上连续,在(a,b)内可导,且f(a)=0,证明:至少存在一点n属于(a,b)

令F(x)=f(x)(b-x)F(a)=0,F(b)=0所以存在n,F'(n)=f'(n)(b-n)-f(n)=0所以f(n)=(b-n)f'(n)再问:为什么是令F(x)=f(x)(b-x)呢,为什

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

设f(x)在上连续,在[0,π]内可导,证明至少存在一点x属于(0,π),使f'(x)=-f(x)cotx

令g(x)=f'(x)sin(x)+f(x)cox(x),只需证明存在一点y使得g(y)=0即可.观察g(x)=(f(x)sinx)'由于f(0)sin0=0,f(π)sinπ=0,根据rolls定理

设f(x)在[0,1]上连续,证明在(0,1)内至少存在一点ξ,使∫f(x)dx=(1-ξ)f(ξ)

构造函数F(x)=(1-x)×∫(0到x)f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,由罗尔中值定理,在(0,1)内至少存在一点ξ,使得F'(ξ)=0.F'

设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a

这一类型的题目通常要构造一个新函数,然后利用微分中值定理做的.设F(x)=(X-b)*f(x)由已知可知F(X)在区间【a b】可导且连续再   F(a)=0&

设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,

令g(x)=x²f(x)则g(0)=g(1)=0由中值定理:存在&∈(0,1),使g'(&)=2&f(&)+&²f'(&)=0即2f(&)+&f'(&)=0

中值定理与等式证明设函数f(x)在[a,b]上连续,在(a,b)内可导,证明:至少存在一点x,使 [bf(b)-af(a

从最后的结果看,对xf(x)用中值定理即可.设F(x)=xf(x),则F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ,使得(F(b)-F(a))/(b-a)=F'(

证明:设f(x)在[a,b]上连续,在(a,b)内可导,则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(

∵f(x)在[a,b]上连续,在(a,b)内可导∴xf(x)在[a,b]上连续,在(a,b)内可导再用拉格朗日中值定理∴则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(b)-af(a)

Fx在(0,2a)在连续 F0=F2a,证明在(0,a)上至少存在一点B使是FB=F(B+a)

构造函数g(x)=f(x+a)-f(x),且在区间[0,a]上是连续的.因为:g(0)=f(a)-f(0)g(a)=f(2a)-f(a),由f(2a)=f(0)可知g(0)乘g(a)=

设fx是实数域上的n次多项式,则fx可约是指fx存在实根?

结论有问题:反例:f(x)=(x^2+1)(x^2+2),f(x)显然可约(已经知道有2个二次因子),但是没有实根.

设函数fx=x2-2ex+m-lnx/x,若函数fx至少存在一个零点,则实数m的取值范围

解析:∵F(X)=X^3-2eX^2+mX-lnX ,记G(X)=F(X)/X则g(X)=X^2-2eX+m-lnX/x令G ‘(X)=2X-2e+(lnX-1)/x^2=0==&

设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,证明至少存在一点m属于(0,a)使得

证明:设g(x)=ln(1+x),g'(x)=1/(1+x),则g'(m)=1/(1+m)∵f(x),g(x)在[0,a]上连续,在(0,a)内可导,且g'(x)≠0∴由柯西中值定理得至少存在一点m属

若函数fx在[a,b]上连续,AB为两个任意正数,试证:

f(x)在闭区间连续,则存在最大和最小值,设为m,M所以m

设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2

应该由零点定理证明:1)如果f(a)=f(b)则ε可以取a或者b;2)不妨设为f(a)>f(b);令F(x)=f(x)-[f(a)+f(b)]/2;于是F(a)=f(a)-[f(a)+f(b)]/2=

关于一道定积分的问题设f(x)在[-a,a]上存在连续的二阶导数,f(0)=0,证明至少存在一点ξ∈[-a,a] ,使我

作变上限积分:令F(x)=∫(0,x)f(x)dx,则F(a)=∫(0,a)f(x)dx,F(-a)=∫(0,-a)f(x)dx即-F(-a)=∫(-a,0)f(x)dxF(a)-F(-a)=∫(-a

设函数fx=x²/2-klnx k>0 证明:若fx存在零点,则fx在区间(1,√e)上仅有

答案如图所示,友情提示:点击图片可查看大图答题不易,且回且珍惜如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~