设fx在[0,1]上存在二阶导数且满足f0=f1如果fx的二阶导绝对值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:59:46
fx=-2x^2-x再问:为啥再问:就因为是奇函数再答:令x小于0,则fx等于负的f(-x),然后将那个解析式中的x换成-x来算再问:整体是个负值?再答:对再问:答案是-1?
∵是奇函数∴f(-x)=-f(x)f(-2)=-f(2)f(2)=log3(1+2)=log3(3)=1∴f(-2)=-f(2)=-1
令x=y=0f(0)=2f(0)f(0)=0令y=-xf(0)=f(x)+f(-x)=0f(x)=-f(-x)是奇函数f(2)=f(1)+f(1)=2f(2a)>f(a-1)+2=f(a-1)+f(2
对任意的x∈R都有f(x)*f(x+2)=10那么f(x+2)=10/f(x)f(x+4)=f[(x+2)+2]=10/f(x+2)=f(x)所以f(x)是周期函数,周期为4x∈[-2,0]时,f(x
等式左边,积分中值定理:3*f(ξ)*(1-2/3)=f(ξ)=f(0)(0
函数fx=1/3x三次方-ax方+1得:f'(x)=x方-2ax令f'(x)=0得:x=0,x=2a又a>0,函数y=fx在区间(a,a方-3)上存在极值,则a
答:定义在R上的偶函数f(x)有:f(-x)=f(x)所以:f(-1)=f(1)=0因为:[xf'(x)-f(x)]/x^2
x=0f(-0)=-f(0)f(0)=0x0f(-x)=(-x)^2+2x+3=x^2+2x+3=-f(x)∴分段函数f(x)=①x^2-2x+3(x>0)②0(x=0)③-x^2-2x-3(x
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
f(y)=f(xy/x)=f(xy)-f(x)那么f(x)+f(y)=f(xy)f(x)-f[1/(x-3)]≤2f[x(x-3)]≤f(2)+f(2)f(x²-3x)≤f(4)因为y=f(
设x0则f(-x)=x(1-x),又函数为奇函数所以f(-x)=x(1-x)=-f(x)故f(x)=-x(1-x)
结论有问题:反例:f(x)=(x^2+1)(x^2+2),f(x)显然可约(已经知道有2个二次因子),但是没有实根.
利用fx+2=-fx得到:f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5)再利用fx是定义在r上的奇函数得到:f(-0.5)=-f(0.5)再利用当0
f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.
函数fx=sinx(cosx-(根号3)sinx)=sinxcosx-√3sin^2x=1/2sin2x-√3(1-cos2x)/2=1/2sin2x+√3/2cos2x-√3/2=sin(2x+π/
1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个
提示:定义在R上的奇函数f(x),且单调递减可知当x>0时f(x)-1且x>0==>x>0由x+10==>x
答案如图所示,友情提示:点击图片可查看大图答题不易,且回且珍惜如有不懂请追问,若明白请及时采纳,祝学业有成O(∩_∩)O~~~