设fx等于sinxcosx减cos2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:59:32
设fx是定义在R上的奇函数,当x小于等于0时,fx=2x²-x,求fx的解析式

fx=-2x^2-x再问:为啥再问:就因为是奇函数再答:令x小于0,则fx等于负的f(-x),然后将那个解析式中的x换成-x来算再问:整体是个负值?再答:对再问:答案是-1?

已知函数fx等于cos平方x加二倍根号三sinxcosx减sin平方x求函数fx的最小正周期和单调递增区间!

f(x)=[(cosx)^2-(sinx)^2]+√3sin2x=cos2x+√3sin2x=2sin(2x+π/6),最小正周期T=π,由-π/2+2kπ≤2x+π/6≤π/2+2kπ,k∈Z解得:

已知函数fx=a((cosx)^2+sinxcosx)+b

f(x)=a(cos²x+sinxcosx)+b=a(cos²x-1/2+sinxcosx+1/2)+b=a(cos2x/2+sin2x/2)+b=a根号下2sin(2x+π/4)

设函数Fx等于2sinxcosx减2倍跟号3cos(兀加x)cosx求fx的最小正周期

f(x)=sin2x+2√3cosxcosx=sin2x+√3(1+cos2x)=sin2x+√3cos2x+√3=2sin(2x+π/3)+√3T=2π/2=π

设函数fx=ax+cosx,x[o,π],设函数fx小于等于1+sinx,求a的取值范围

AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画

设函数fx等于alnx加2分之ax平方减2x.a属于r.当a等于1时、求函数fx在区间[1,e]上最大值

f(x)=alnx+(ax^2)/2-2x当a=1时,f(x)=lnx+x^2/2-2xf'(x)=1/x+x-1f''(x)=1-1/x^2即1-1/x^2即x=1或x=-1时,f(x)存在拐点,即

设函数fx=2cos^2x+2根号3sinxcosx-1(x属于R),若x属于[0,π/2],求函数fx的值域

fx=2cos^2x+2根号3sinxcosx-1=2cos^2x-1+2根号3sinxcosx根据倍角公式,sin2α=2sinαcosαcos2α=2cos^2(α)-1fx=cos2x+根号3s

函数fx=sinxcosx最小值及最小正周期是

f(x)=(2sinxcosx)/2=(sin2x)/2周期为2π/2=π最小值为-1/2,sin2x=-1时取得

设函数Fx等于x的立方减六x加5,求Fx的单调区间和极值

F(x)=x^3-6x+5F'(x)=3x^2-6=3(x+√2)(x-√2)x∈(-∞,-√2)时单调增x∈(-√2,√2)时单调减x∈(√2,+∞)时单调增x=-√2时有极大值F(-√2)=4√2

已知函数fx=2倍的根号3sinxcosx 2cosx的平方减1(x属于R)求函数fx的最小正周期.

fx=2√3sinxcosx+2cos^2x-1=√3sin2x+cos2x=2(√3/2sin2x+1/2cos2x)=2sin(2x+π/6)所以最小正周期是π建议你再看看二倍角公式

设函数fx=xe^x,gx=ax^2+x,若x>等于0时.恒有fx>等于gx.求a的取值范围

f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0

设fx=ax²+c(a≠0) 若上限为1 下限为0的fx的定积分等于fx0 且0≤x0≤1 求x0

∫(0到1)ax^2+c=1/3a+c∴f(x0)=1/3a+c∴x0^2=1/3=>x0=±√3/3又0≤x0≤1∴x0=√3/3

设函数fx等于x加x分之一减一 (x 大于等于2)则f (x)的值域

f(x)=x+1/x-1(x>=2)>=2-1=1x=1时去最小值但是x>=2所以f(x)单调递增f(x)min=f(2)=1.5值域:[1.5,+∞)再问:为什么x大于等于2时函数是增函数再答:画图

设fx等于lg(4-k*2的x次方),求函数fx的定义域

只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k

fx=2根号3sinxcosx+cos2x+1化简

解:原式=√3sin2x+cos2x+1=2(√3/2sin2x+1/2cos2x+1=2cos(2x-pai/3)+1.

设函数fx=sinx+cosx和gx=2sinxcosx 若a为实数,求Fx=af(x)+g(x),x属于[0,π/2]

令sinx+cosx=2sin(x+π/4)=t∵0≤x≤π/2,π/4≤x+π/4≤3π/4,∴-√2/2≤sin(x+π/4)≤1即-√2≤t≤2(sinx+cosx)^2=1+2sinxcosx