设n阶方针A满足A^2-3A E=0,证明A-2E可逆,并求其逆矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:44:53
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

设n阶矩阵A满足A^2+A-3i=0 证明矩阵A-2I可逆,并求(A-2i )^-1

注:i应该写成大写的I,但看起来象1,也可以记为E.因为A^2+A-3E=0所以A(A-2E)+3(A-2E)+3E=0即有(A+3E)(A-2E)=-3E.所以A-2E可逆,且(A-2E)^-1=(

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线代证明题求解设A是n阶方阵,且满足R(E+A)+R(E-A)=n,试证:A满足A^2=E.

Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E

设A为n阶矩阵,且满足方程3A^-2A+4I=0.证明A与3A+2I均可逆

由已知,A(3A-2E)=-4I所以A可逆,且A^-1=(-1/4)(A-2E).再由3A^-2A+4I=0得A(3A+2I)-(4/3)(3A+2I)+8/3I=0所以(A-(4/3)I)(3A+2

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n

证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

设n阶矩阵A满足A^2+2A+3I=0,则A的逆矩阵?

因为A^2+2A+3I=0所以A(A+2I)=-3I所以A可逆,且A^-1=(-1/3)(A+2I).

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

设A为n阶矩阵,满足2A^2-3A+5I=0,证明(A-3I)=-1/14(2A+3I) 速

因为2A^2-3A+5I=0所以2A(A-3I)+3(A-3I)+14I=0所以(2A+3I)(A-3I)=-14I所以(A-3I)^-1=(-1/14)(2A+3I)再问:a1=(1,0,2),a2

设N阶方阵A满足A^2-A-3I=0,怎么得出A-I可逆

(A-E)A=A^2-A=3E,因此(A-E)A/3=E,A-E可逆,其逆为A/3.

设n阶方针A满足A^2-5A+5E=0.证明矩阵A-2E可逆,并求其逆矩阵

因为A^2-5A+5E=0所以A(A-2E)-3(A-2E)-E=0所以(A-3E)(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A-3E