设n阶方阵 A的伴随矩阵4*,且A=a,则a*
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:44:22
R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)
||A|A*|=|A|^n|A*|=|A|^n|A|^(n-1)=|A|^(2n-1)用到了几个结论:1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
因为|A*|=|A|^(4-1)=|A|^3=8所以|A|=2所以|2(A^2)^-1|=2^4/|A^2|=2^4/2^2=4
利用关系式|A*|=|A|^(n-1),可得知|A|=2.经济数学团队帮你解答,请及时采纳.
A^(-1)=A*/|A|=3A*A*=|A|A^(-1)=1/3A^(-1)|A*+(1/4A)^(-1)|=|A*+4A^(-1)||=|A*+12A*|=|13A*|=|13/3A^(-1)|=
貌似选c这有例子,自己看看.加油,线性代数还是挺麻烦的,多看看书.
由A*A=|A|E,A*=A'得A'A=|A|E.再由A不等于0,设aij≠0.则比较A'A=|A|E第j行第j列元素有a1j^2+a2j^2+...+aij^2+...+anj^2=|A|而A是实方
由已知,A*=A^T所以AA^T=AA*=|A|E由于A≠0,所以存在aij≠0.考虑AA^T中第i行第i列的元素知ai1^2+ai2^2+...+aij^2+...+ain^2=|A|再由aij是实
(1)证:如果r(A)
行列式中不是有个公式:(A)(A*)=det(A)E那么两边取行列式的det(A)det(A*)=[det(A)]^n所以,detA*=[detA]^(n-1)=a^(n-1)不是是否明白了再问:明白
AA*=|A|A*=|A|A^-1|2A^-1|-|A^*|=|2A^-1|-||A|A^-1|=|2A^-1|-|3A^-1|=2^4|A^-1|-3^4|A^-1|=-65|A^-1|=-65/3
1,2可由定理若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;其他情况r(A*)=0获证3可由AA*=(detA)E导出,将A按可逆不可逆分类讨论下即可
R(A)=n-1=>|A|=0=>AA*=|A|E=0又因为R(AA*)》R(A)+R(A*)-n因此R(A*)《1有因为R(A)=n-1,即至少有一个n-1阶子式不等于0,即R(A*)》1所以R(A
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
n-1因为R(A)必定小于n而A*是各n-1阶子式组成的矩阵其不为0说明A比能取到至少1个不为0的n-1阶子式故R(A)=n-1
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.