设x1,--x5是独立且服从

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:46:54
概率论抽样分布问题~设X1,X2,X3,X4相互独立且服从相同分布χ^2(1),则X1+X2/X2+X4~

服从自由度为(2,2)的F分布X1+X2和X2+X4都服从自由度为2的卡方分布,所以[χ2(2)/2]/[χ2(2)/2]~F(2,2)建议你看下书本吧,三大抽样分布.

设X1,X2,X3为相互独立的随机变量,且都服从(0,1)上的均匀分布,求三者中最大者大于其他两者之和的概率.

(X1,X2,X3)在立体区域0x1+x2}的概率之和.且由对称性不难看出这三个事件的概率是相等的.而概率P{x3>x1+x2}就是由平面x3=x1+x2,x1=0,x2=0,x3=1这四个平面所围立

一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

设X1,X2,...,Xn,...相互独立,且都服从P(λ),那么1/n∑Xi依概率收敛到?i从1到n

依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ

随机变量x相互独立且服从标准正态分布,(x1-x2)/√(x3^2-x4^2)服从什么分布 答案是t(2)

x3^2+x4^2服从卡方(2)(x1-x2)服从N(0,2)根据t分布定义[(x1-x2)/√2]/√(x3^2+x4^2)/2=(x1-x2)/√(x3^2+x4^2)服从t(2)

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期

P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.

设x1,x2,x3,x4,x5,x6,x7是自然数,且x1<x2<x3<x4<x5<x6<x7,x1+x2=x3,x2+

∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,利用整除性,x1必是10的奇数倍,又x1<x2,可得x1=10x2=94,x1=30x2=81,x1=50x2=68,(x1+

设x1,x2,x3,x4,x5,x6,x7是自然数,且x1

由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90

设X1、X2、X3、X4、X5均为自然数,且X1+X2+X3+X4+X5=X1*X2*X3*X4*X5 求X5的最大值

1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975

设随机变量X1和X2相互独立,且都服从正态分布N(0,1/2),令Y=X1-X2,求E|Y|

Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²

设随机变量X1X2X3...X5相互独立同分布且其方差存在,记W=X1+X2+X3,Z=X4+X3+X5,则W与Z的相关

设X期望是a,方差是,则DX=bDW=3b,DZ=3b,D(W-Z)=DW+DZ-2COV(W,Z),则COV(W,Z)=b,则相关系数等于1/3

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,

设x1…xn为相互独立的随机变量,且每一个都服从参数为λ的指数分布,试证:(1)2λxi~χ²(

主要是利用分布函数的对立事件,Fz(Z)=F(min{X1,X2,...Xn}≤z),最小的小于等于z,我们不好确定其它变量和z的关系,采用它的对立事件=1-F(min{X1,X2,...Xn}≥z)

设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知

用定义做就行lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式lim(n->∞)P{[∑(1