设x1,x2...xn服从,E(S²)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:31:01
关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=m

这两题貌似很难的,在我们学校的论坛上见过,有牛人回答出了:第一题:U的概率分布FU(u)=P{U

一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}

想法:考虑能否求出U的分布函数,进而求其数学期望设F(y)是U的分布函数由定义:F(y)=P(U

设随机变量X1,X2,…Xn相互独立,且都服从(0,1)上的均匀分布.问:(1)求U=max{X1,X2,…Xn}数学期

所有关于min、max这种题都有一个固定的下手点,就是U≤u→X[1]、X[2]…X[n]里面最大的都小于等于u→每个X[1]、X[2]…X[n]都小于等于u每个都小就可以通过独立事件的概率乘法公式计

设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望

具体过程如图,点击可放大:再问:谢谢您!好棒的!希望以后还可以请教您问题!再问:请问你可以帮我解答这个问题吗?再问:

已知几个随机变量X1,X2,X3.Xn服从正态分布,

首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到

设X1,X2,...,Xn,...相互独立,且都服从P(λ),那么1/n∑Xi依概率收敛到?i从1到n

依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ

设X1,X2,…,Xn,…为独立同分布的随机变量序列,若( )时,则{Xi}服从契比雪夫大数定律.

选A要满足切比雪夫大数定律,必须要求Xi的方差存在(一致有界)当然,D(Xi)存在蕴含了E(Xi)存在简单一点的方法就是排除对B选项,E(Xi)=∑{k=1,∞}k/[k*(k+1)]=∑{k=1,∞

设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期

P[Z>t]=P[X1>t,...,Xn>t]=P[X1>t]^n,得知Z亦为参数为n的指数分步,所以期望是1/n,方差是1/n^2.做数学题最大的乐趣是想题,考试的时候没有人给你问.

设X1.X2.Xn是来自正态总体N(3,4)的样本,则1/4倍的Xi-3的平方求和服从的分布为?

由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的

注意到相同下标的X不独立,不相同下标的X相互独立,则该题就解决了

设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n

因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X