设X1>0,Xn 1=Xn×(n 1) (3n-2),(n>1)求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:50:09
记a的算术平方根为Q(抱歉我还只有一级不能插图片,连个公式也插不了)1.当X1>Q时,证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q(y=x+
x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号即xn是大于等于1的数2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn=(1-Xn^2)/Xn
题目写了错吧,等号右边的3(1+xn)/1+xn不是约了吗
x(n+1)=(a+xn)/(1+xn)=(a/xn+1)(1/xn+1)当xn→正无穷时,a/xn=0,1/xn=0所以x(n+1)=1/1=1所以数列{xn}收敛,极限为1
记limxn=a,则limxn+1=limxn=a.对xn+1=3(1+xn)/3+xn两边取极限,得到a=3(1+a)/(3+a),解得a=正负根号3.由已知条件易知xn>0,所以limxn>=0.
问题一般化:设X1≥0,Xn=√( a+X[n-1]) ﹙n=2,3...),求极限limXn首先,对任意正整数n,xn>0; 其次,x1<x2.
X(n+1)=2xn/(xn+2)两边转化为倒数得到1/X(n+1)=(xn+2)/2xn1/X(n+1)=1/2+1/xn1/X(n+1)-1/xn=1/2公差为1/2的等差数列
极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调
收敛好证,极限难求啊!点击图片有收敛证明
有界:Xn+1=1/2(xn+2/xn)>=1/2*2*根号(Xn*2/Xn)=根号2n=1,2,3.单调:Xn+1-Xn=-1/2(Xn-2/Xn)当n>=2时,Xn>=根号2,所以Xn+1-Xn
由已知可得x(n+1)-1=(x(n)-1)^3/(3x(n)^2+1),所以当x(n)>1时可推出,x(n+1)>1;而当x(n)1;当x11,从而有x(n+1)/x(n)
首先,对任意正整数n,xn>0;其次,x1
1.x(n+1)=√(axn)先证xn有下界:猜想xn>a利用数学归纳法:x1>a假设,当n=k,xk>a则,当n=k+1,x(k+1)=√(axk)>a故,数归成立,xn>a再证xn单调递减:x(n
取对数,原不等式等价于x1lnx1+x2lnx2+...+xnlnxn≥(x1+x2+..+xn)(lnx1+lnx2+...+lnxn)/n即n(x1lnx1+x2lnx2+...+xnlnxn)≥
因为(Xi/(X1+X2+……+Xn))的绝对值小于等于1,所以它的期望存在.由对称性,E[(X1)/(X1+...Xn)]=E[(X2)/(X1+...Xn)]=...E[(Xi)/(X1+...X