设x~n(0,1),求y=e^x的密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:43:27
y=ln(1+x)y′=1/(1+x)y′′=-1/(1+x)²y′′′=(-1)(-2)[1/(1+x)³].y^n=(-1)(-2)...(-n+1)[1/(1+x)^n]
y'=(1-x)/(1+x)y'(0)=(1-0)/(1+0)=1
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
说实话,这个题不是一般的简单,只要套公式即可.E(Z)=1/3*1+1/4*0=1/3D(Z)=1/9*9+1/16*16=2
瀑布汗.(X^2+Y^2)/(X^2+Y^2)=1E(1)=1再问:为什么E(1)=1?我知道(X^2+Y^2)/(X^2+Y^2)=1得出e(1)但为什么E(1)=1?再答:常数的期望等于自己,这题
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:
e^(x+y)-xy=1两边同时求导,e^(x+y)*(1+dy/dx)-y-xdy/dz=0(1)验证x=0,y=0在原曲线上.令x=0,y=0代入到(1)e^0*(1+dy/dz)-0-0*dy/
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
根号(2*pi)积分可以化成极坐标做.
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0
dy=2[e^x+e^(-x)]*[e^x-e^(-x)]dx再问:��������ϸ����再答:��������ϸ��������Dz��谡̫��û�취再问:������y���
1、用分布函数法求F(y)=P(|x|<y)当y≤0时,F(y)=0当y>0时,F(y)=∫〔1/√(2π)〕*e^〔-(x^2/2)〕*dx(-y≤x≤y)当y≤0时,F’(y)=0当y>0时,F’
对等式两边同时求导:dy/dx=-e^-x/(1+e^-x)dy=-1/(1+e^+x)
FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0
可以这么做:因为X,Y相互独立,所以E[X^2/(X^2+Y^2)]=E[Y^2/(X^2+Y^2)].而E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E[(X^2+Y^2)/(
N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0
点击看大图