设X与Y独立,其概率密度分别为fx(x)=1,0求Z=X Y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:23:25
设随机变量X,Y相互独立,它们的概率密度分别为:

可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~

设随机变量X和Y相互独立,它们的概率密度分别为fx(X),fy(y),则(X,Y)的概率密度为

D.fx(x)fy(y)再问:能不能解释一下?再答:随机变量X和Y相互独立

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

设随机变量X与Y相互独立其概率密度分别为 Px(x)={2x,0

因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0

设二维随机变量(x,y)服从二维正态分布,其概率密度1/50π证明X与Y相互独立详见图片 求X,Y是否独立

f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:

30.设二维随机变量 的概率密度为 ,(1)分别求 关于 的边缘概率密度 ;(2)问X与Y是否相互独立,

30fx(x)=∫(0~)f(x,y)dy=1fy(y)=∫(0~1)f(x,y)dx=e^(-y/2)/2fx(x)fy(y)=f(x,y)所以互相独立311)x>=1时Fx(x)=∫(1~x)1/

1、设二维随机变量(X,Y)的概率密度为,问X与Y是否相互独立,并说明理由.

1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/

设随机变量X,Y相互独立,其概率密度函数分别为fx(x)=2e-2x 求D(X+2Y)

D(X+2Y)=D(x)+D(2y)+2cov(x,y)独立性知cov(x,y)=0指数分布(2)因此D(x)=1/4,均匀分布(0,4)因此D(y)=4x4/12因此D(x)+D(2y)=D(x)+

设X与Y相互独立分布,其共同概率密度函数为f(x)=x/4*e^(-x^2/8),x>=0;0,x

见以下两图. 以下你会的.再问:其实我就是求分布函数的时候及份额不会求。。然后分布函数求不对。。再答:不用分部积分.f(x)=(x/4)e^(-x²/8),x>0.F(x)=∫[0

X与Y为相互独立的随机变量,其密度分别为fx(x).fy(y),则它们之和Z=X+Y的概率密度为:fz(z)=?

回答:fz(z)=fx*fy=∫{-∞,∞}fx(z-y)fy(y)dy=∫{-∞,∞}fx(x)fy(z-x)dx其中,fx*fy表示fx(x)的fy(y)的卷积.

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出