设x服从 上的均匀分布,则E(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:50:59
概率论与数理统计的题:设X,Y是相互独立且(0,a)上服从均匀分布的随机变量,则E【min(x,y)】=?

这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x

概率论!设随机变量X服从[1,4]上的均匀分布,则P{X>2}=?谢谢!

既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。

设随机变量x服从(0,1)上的均匀分布,求Y=e^X的数学期望和方差

XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量x服从(0,1)上的均匀分布,Y=e^x 求y的数学期望 和 方差

楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

设(X,Y)服从下列区域D上的均匀分布,其中D:x>=y,0

可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

设随机变量X服从某一区间上的均匀分布,且E(X)=3,D(X)=1/3 ,求X的概率密度函数f(x)

你记住均匀分布期望、方差公式就很快了,均匀分布U(a,b)的期望是(a+b)/2,方差是(b-a)^2/12,(最好记住,做题快)于是a+b=6,(b-a)^2/12=1/3,于是a+b=6,b-a=

概率论:设(X,Y)服从下列区域D上的均匀分布,求p{X+Y

既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0

设随机变量x服从区间(1,2)上均匀分布,试求Y=e^2x的密度函数

P(Y≤y)=P(e^2x≤y)=P(x≤lny/2)而X服从U(1,2)所以P(X≤x)=x于是P(Y≤y)=P(x≤lny/2)=lny/2所以f(y)=1/2y因为x在(1,2)上所以y=e^2