设X服从(0,1)上的正态分布,求Y=e^x的方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:59:06
A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这
N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
真正的|X-Y|的方差要比这样算的小很多...定义I{x>y}=1如果x>y;否则为0I{x
设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5
1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
E(X)=0,D(X)=E(X^2)=1,E(X^3)=0E(X^4)=3E(Y)=2*E(X^2)+E(X)+3=5E(XY)=2*E(X^3)+E(X^2)+3*E(X)=1E(Y^2)=4*E(
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
一个线性函数的正常分布或正态分布E(Y)=(1-2X)?=1-2EX=1D(Y)=D(1-2X)=4D(X)=4因此,YN(1,4)
由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.
X和Y相互独立,都服从均值为0,方差为0.5的正态分布,则由性质可得到:X-Y也是一正态分布.这点高数书上有.由均值的性质可以得到X-Y的均值=X的均值-Y的均值,故X-Y的均值为0由方差的性质可以得
标准的正态分布直接查表就行~这种式子正常人是算不出来的.先给你两个式子P(ξ<x)=F(x);P(a<ξ<b)=F(b)-F(a).F(x)就是你的标准正态分布表N(0,1)所对应的数值.另外ξ的分布
由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立
1,P(0.02
fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)