设x服从N(5,4)分布,试求a,b使得(1)p{x

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/16 11:03:31
一道概率论的题目设X,Y相互独立,且都服从N(0,1)分布,试求E(根号X^2+Y^2)

这是二维的Maxwell分布,你学大学物理会遇到三维的.不过对于只求期望的话,不用求它的分布函数.E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量U服从(-2,2)上的均匀分布,试求:(1)Z=X+Y的分布律

答: 设X,Y相互独立,且服从同分布X~U(-2,2),Y~U(-2,2), 则X,Y的概率密度为(y只需换成x) f(x): ①:1/4,-2<x<

设x服从B(3,0.2)分布,Z=5X+2,求x与z的协方差~

cov(x,z)=cov(x,5x+2)=cov(x,5x)+cov(x.2)=5cov(x,x)+0=5Dx=5np(1-p)=5*3*0.2*0.8=0.24

设x服从泊松分布,求E[1/(x+1)]

如果泊松参数为a,答案为(1-e^-a)/a,不保证算对,总之你把表达式展开应该能发现它和某个泰勒公式很相近

设随机变量X,服从参数T,T>0的泊松分布,求E(X平方)

E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

设x,y相互独立,都服从N(0,1)分布,试求E(根号(x2+y2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

根号(2*pi)积分可以化成极坐标做.

设随机变量X服从区间(0,2)上的均匀分布试求X的分布函数Fx(X)

/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

设随机变量x服从N(-1,4²),求下列各值P(x-1.5)

N(μ,σ2)(X-μ)/σ2~N(0,1)P(x-1.5)=Φ[(-1.5+1)/4]=Φ(-0.125)=1-ф(0.125)=1-0.5478=0.4522

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

设随机变量X服从参数为2的泊松分布,N(0,4),且X与Y的协方差为Cov(X,Y)=2,令Z=3X-2Y,求D(Z)

你用类似于平方差的公式展开就可以了的,交叉项就是协方差.再问:求具体步骤,,,我也是替别人问的再答:D=9dx+4dy-2covxy再问:就这一步就ok了?有木有详细步骤?十分感谢你的回答~~~再答:

设X服从泊松分布,且期望EX=5,写出其概率分布律

泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k

设随机变量X服从正态分布N(0,σ^2),若P{|X|>k},试求P{X<k}

P{|X|>k}=0.1P{X<k}=1-P{|X|>k}/2=0.95

设X~N(1,2),Y服从参数为3的泊松分布,且X与Y独立,求D(XY)

X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;E(Y^2)=3^2+3=12;E(X^2)=1;D(xy)=E[(xy)^2]-E^2(xy)=E(x^2y^2)-E^2(