设x服从二项分布B(n,p),则有()D(2x-1)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:51:57
期望=np=12;方差=np(1-p)=8
x服从B(n,p)推出:E(X)=npD(X)=npq其中q=1-p所以q=0.8从而p=0.2,n=8
(1)由P(X≥1)=5/9,可得P(X=0)=4/9=(1-p)^2,故p=1/3,从而P(Y≥1)=1-(1-p)^3=26/27(2)np乘(1-p)^{n-1}=n(n-1)/2乘p^2乘(1
E(x)=np=0.8D(x)=np(1-p)=0.64两式相除得1-p=0.8,所以p=0.2,代入解得n=4这表示4次独立重复试验中,每次事件A发生的概率为0.2,不发生概率为0.8,p(x=3)
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
稍等,答案奉上还在吗?再问:在的。再答:额,马上给你答案满意请采纳,不懂再追问,谢谢
若X服从二项分布B(n,p),那么Y=1-2X也服从二项分布B(n',p'),n'=1-2n,p'=p.我们知道,如果设X均值为a,方差为b,则a=np,b=npq.(q=1-p)易证,Y=1-2X的
解有题意知np=3①np﹙1-p﹚=3/2②解方程组得p=1/2,n=6再问:标准差np(1-p)应该是:根号6/2,而不是3/2啊..................................
由二项分布的公式可以知道P(x=3)=C(6,3)*0.5^3*(1-0.5)^(6-3)=20*0.5^6=0.3125
P(X=k)=C(n,k)*p^k*(1-p)^(n-k).
∵ξ服从二项分布B~(n,p)由Eξ=2.4=np,Dξ=1.44=np(1-p),可得1-p=1.442.4=0.6,∴p=0.4,n=2.40.4=6.故选B
E(x)=np=300D(x)=np(1-P)=200∴p=1/3,n=900
E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;
P{X≥1}=5/9→P{X=0}=1-P{X≥1}=4/9P{X=0}=1*p^0*(1-p)^2=4/9→p=1/3
U(a,b)表示X服从a,b区间上的均匀分布
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)