设x的概率密度为fx,证θ是θ的无偏估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:53:34
当x≧0时,y≧1,f(x)=e^(-x),F(x)=∫f(x)=-e^(-x)+C,当x→+∞时,F(x)=-e^(-x)+C=1,所以C=1,F(x)=1-e^(-x),所以F(y)=1-1/y,
(1)利用归一性,从0到1积分∫a*(1-x)dx=1,解得a=6;(2)利用分布函数定义为密度函数的变上限积分求,当x
D.fx(x)fy(y)再问:能不能解释一下?再答:随机变量X和Y相互独立
fz=z^2(0
边缘概率密度的公式:fx(x)=∫-∞+∞f(x,y)dy,-∞是下限(不是“下标”),+∞是上限在该题中,f(x,y)=4xy,0≤x≤1,0≤y≤1)(你题抄错了吧!是y),则可以得到:fx(x)
楼主大大,这显然是概率论和数理统计的问题,怎么会是现行代数呢?解法如下:概率密度函数f(x)=1/2*e^(-|x|),说明一下,由于积分号打不出来,暂时用∫代表,∫[a,b]中括号内分别表示积分的上
设F(x)为X的边缘概率密度,G(y)为Y的边缘概率密度由边缘概率密度计算公式:F(x)=∫f(x,y)dy积分上下限为正负无穷由联合函数的定义域知:F(x)=∫8xydy积分上下限为0,xF(x)=
解法一:分布函数法F(y)=P(Y
新年好!可用概率密度积分为1如图得出c=-1/2.经济数学团队帮你解答,请及时采纳.谢谢!
第二个题满足第一个题的题设,所以直接用的第一个题的结论.第一个题中Y=g(X)=aX+b,第二个题中Y=g(X)=(X-μ)/σ=(1/σ)X-μ/σ,右端的两个式子都是X的一次多项式,1/σ,μ/σ
以X取值为分段标准当X
大学概率知识两题一样的!还好我刚学完~相互独立,均匀分布,则概率密度都是1/(b-a),概率分布函数就是把概率密度从a积分到x,F(x)=(x-a)/(b-a)(1)Z1=max(X,Y)的分布函数=
望采纳.再问:答案是分段的1-e^-z,0
应该先求Y的分布函数,然后再算概率密度过程如图
详细解答如下: