设y=y(x)是由y(x-y)^2=x所确定的隐函数,求∫dx (x-3y).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:07:49
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

设y=y(x)是由方程y=tan(x+y)所确定的隐函数,求微分dy

两边对x求导:y'=(1+y')[sec(x+y)]^2得y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=1/{[cos(x+y)]^2-1}因此dy=dx/{[cos(x+y)]^

设函数y由方程ln y+x/y=0确定,求dy/dx

lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].

设由x^2y-e^(2y)=siny确定y是x的函数,求dy/dx

这是隐函数啊,利用隐函数求导法则方程两边同时关于X求导,注意y是x的函数,即得如下:2xy+x^2y'-2e^(2y)y'=cosyy'整理一下(x^2-2e^(2y)-cosy)y'=-2xyy'=

设y=y(x) 由方程ysinx=cos(x-y) 所确定,则y'(0)=

设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&

设y=y(x)由方程e^y-xy=0所确定,求y'(x)

这是一个复合函数求导,y=y(x)所以求e^y的导数首先对整体求导,再对y求导即为e^y*y'xy的导数为y+x*y'(根据求导规则)所以两边求导可得e^y*y'-y-x*y'=0

设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0-sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0dy/dx=[sin(x+y)]/[1-sin(x+y)]

,.设y=y(x)是由方程e^x-e^y=xy所确定的隐函数 求y'(0)另一题设y=y(x)由参数方程x=cos t和

网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设y=y(x)是由y^2(x-y)=x^2所确定的隐函数,求∫(1/y^2)dx

.y/x=ty=txy=xtdy/dx=t+t'xdy=(t+t'x)dxy^2(x-y)=x^2t^2(x-tx)=1x=1/[t^2(1-t)]y=1/[t(1-t)]1/y^2=t^2(1-t)

设y(x)由方程e^y-e^x=xy 所确定的隐函数 求y' y'(0)

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设y=y(x)是由sin(xy)=lnx+ey

在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2

设函数y=f(x)由方程y=xe^y确定,求dy/dx 为什么 y'=e^y+xe^y*y'

y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得

设函数y=y(x)由方程(x+y)^(1/x)=y所确定,则dy/dx=?

ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����

设函数y=y(x)由方程e^y+xy+e^x=0确定,求y''(0)

/>e^y+xy+e^x=0两边同时对x求导得:e^y·y'+y+xy'+e^x=0得y'=-(y+e^x)/(x+e^y)y''=-[(y'+e^x)(x+e^y)-(y+e^x)(1+e^y·y'

设Y=F(x)是由函数方程ln(x+2y)=x^2+y^2所确定的隐函数,求Y

F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[