设y=y(x)由方程cos(xy) 3x y=1所确定
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:44:49
cos(xy)=x+y两边微分,得dx+dy-sin(xy)*(x*dy+y*dx)=0dx(1-ysin(xy))+dy(1-xsin(xy))=0dy/dx=(ysin(xy)-1)/(1-xsi
令F(x,y)=cos(xy)-x-yF'(x,y)x=-ysin(xy)-1对x求偏导F'(x,y)y=-xsin(xy)-1对y求偏导切线方程为:(x-0)/F'(x,y)=(y-1)/F'(x,
对方程两边同时求导得,﹣﹙y+xy′﹚sin﹙xy﹚+e^y+﹙x+1﹚y′e^y=0令x=0则方程cos(xy)+(x+1)*e^y=2为1+e^y=2,得y=0,即切点坐标为﹙0,0﹚将﹙0,0﹚
dcos(xy)=dx-sin(xy)d(xy)=dx-sin(xy)(ydx+xdy)=dx-ysin(xy)dx-xsin(xy)dy=dxdy=-[ysin(xy)+1]dx/[xsin(xy)
lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-
由隐函数微分法可得:-sin(x+y)(1+y′)+y′=0-sin(x+y)+[1-sin(x+y)]y′=0∴y′=sin(x+y)/[1-sin(x+y)].
设y=y(x)由方程ysinx=cos(x-y)所确定,则y'(0)=x=0时cos(-y)=cosy=0,故y=π/2+2kπ,k∈ZF(x,y)=ysinx-cos(x-y)=0dy/dx=-(&
两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。
两边求导,-sin(x+y)(1+y`)+e^yy`=1,dy=1+sin(y+x)/e^y-sin(x+y)dx再问:亲,这是正确的么?我是帮人问的==对的就给分了啊!
对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0-sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0dy/dx=[sin(x+y)]/[1-sin(x+y)]
=-[ysin(xy)+2e^(2x+y)]/[ysin(xy)+e^(2x+y)]*(dx)再问:麻烦给我写出解的过程。。再答:等式两边取对数,得:d[e^(2x+y)]-d[cos(xy)]=0(
dy/dt=cost-cost+tsint=tsintdx/dt=-sintdy/dx=(dy/dt)/(dx/dt)=-t再问:为什么-tcost会分解成-cost+tsint~~~+_+知道了==
cos(x+y)+y=1两边同时对x求导-(1+y~)sin(x+y)+y~=0可得:=(1+y~)sin(x+y)=sin(x+y)/(1-sin(x+y))
B对方程x+cos(x+y)=0两边取微分,得dx-sin(x+y)d(x+y)=0即dx-sin(x+y)dx+sin(x+y)dy=0,整理得[1-sin(x+y)]dx=-sin(x+y0dy从
网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式
分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.
这个是对隐函数的求导.隐函数求导时,遇到因变量时,除和自变量一样外,还要再乘以因变量的一阶导数.因此y=y(x)由方程cos(x)+y=1确定时,两端对x求导就得-sinx+y'=0y'=sinx如果
x=0时,代入方程得:1+1=y,得:y=2对x求导:(y+xy')e^xy-sin(xy)*(y+xy')=y'将x=0,y=2代入得:2=y'故dy(0)=2dx
ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).