设y=y(x)由方程x=sin^2(π 4*t)dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:41:07
设函数y由方程ln y+x/y=0确定,求dy/dx

lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-

求设方程y=sin(x+y)确定了y是x的函数,求dy/dx

y=sin(x+y),y'=cos(x+y)*(1+y'),y'=cos(x+y)/(1-cos(x+y))=dy/dx

1、设函数y=y(x)由方程e^x-e^y=sin(xy)所确定,求(dy/dx)|x=0;2、设函数f(x)=x^2+

1)x=0代入方程:1-e^y=0,得y(0)=0两边对X求导:e^x-y'e^y=cos(xy)(y+xy')y'=[e^x-ycos(xy)]/[xcos(xy)+e^y]代入x=0,y(0)=0

设y=y(x)由方程e^xy+sin(xy)=y确定,求dy/dx.

e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))

设函数y=f(x)由方程sin(x^2+y)=xy 确定,求dy\dx

这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos

设函数y=f(x)由方程e∧y+sin(x+y)=1决定,求二阶导数

两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1

设函数y=y(x)由参数方程x=cos t,y=sin t - t cos t确定,求dy/dx

dy/dt=cost-cost+tsint=tsintdx/dt=-sintdy/dx=(dy/dt)/(dx/dt)=-t再问:为什么-tcost会分解成-cost+tsint~~~+_+知道了==

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy

分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.

设函数y=f(x)由方程sin y+e^x-xy^2=0确定,求d y/d x

Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)

设函数y=y(x)由方程sin(x²y)+ln(2x-y)=0所确定,则曲线y=y(x)在点(0.-1)处的切

(0,-1)在曲线上,是切点对x求导cos(x²y)*(2xy+x²*y')+1/(2x-y)*(2-y')=0吧(0,-1)代入2-y'=0所以切线斜率k=y'=2所以是2x-y

设函数z=z(x,y)由方程2sin(x+2y-3z)=x+2y-3z所确定,求证z对x的偏导加上z对y的偏导等于1

公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.

已知函数y=y(x)是由方程y=sin(x+y)确定,求y的导数

方程y=sin(x+y)两边对x求导数有:y'=cos(x+y)(x+y)'=cos(x+y)(1+y')移项整理得:[1-cos(x+y)]y'=cos(x+y)因此:y'=cos(x+y)/[1-

设y=y(x)是由sin(xy)=lnx+ey

在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2

设函数y=y(x)由方程(x+y)^(1/x)=y所确定,则dy/dx=?

ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����

设y=y(x)由方程x^2-sin(xy)=2y确定,求dy/dx

dy/dx=-fx/fy,你自己可以算吧

设隐函数y=y(x)由方程x^y-e^y=sin(xy)所确定,求dy

化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[