设y=y(x)由方程x=sin^2(π 4*t)dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:41:07
lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-
y=sin(x+y),y'=cos(x+y)*(1+y'),y'=cos(x+y)/(1-cos(x+y))=dy/dx
1)x=0代入方程:1-e^y=0,得y(0)=0两边对X求导:e^x-y'e^y=cos(xy)(y+xy')y'=[e^x-ycos(xy)]/[xcos(xy)+e^y]代入x=0,y(0)=0
再答:隐函数高阶求导。再答:
e^(xy)+sin(xy)=y(y+xy')e^(xy)+(y+xy')cos(xy)=y'y'=(ye^(xy)+ycos(xy))/(1-xe^(xy)-xcos(xy))
这个题目要利用隐函数的求导法则.则sin(x^2+y)=xy(两边同时求导,还要结合复合函数的求导法则)cos(x^2+y)*(2x+y′)=y+xy′2xcos(x^2+y)-y=xy′-y′cos
两边对x求导:y'e^y+(1+y')cos(x+y)=0,1)这里可得到y'=-cos(x+y)/[e^y+cos(x+y)]再对1)求导:y"e^y+(y')^2e^y+y"cos(x+y)-(1
dy/dt=cost-cost+tsint=tsintdx/dt=-sintdy/dx=(dy/dt)/(dx/dt)=-t再问:为什么-tcost会分解成-cost+tsint~~~+_+知道了==
先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-
分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.
Fx=e^x-y^2Fy=cosy-2xydy/dx=-Fx/Fy=(y^2-e^x)/(cosy-2xy)
(0,-1)在曲线上,是切点对x求导cos(x²y)*(2xy+x²*y')+1/(2x-y)*(2-y')=0吧(0,-1)代入2-y'=0所以切线斜率k=y'=2所以是2x-y
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
方程y=sin(x+y)两边对x求导数有:y'=cos(x+y)(x+y)'=cos(x+y)(1+y')移项整理得:[1-cos(x+y)]y'=cos(x+y)因此:y'=cos(x+y)/[1-
在方程中令x=0可得,0=lney(0)+1,从而可得,y(0)=e2将方程两边对x求导数,得:cos(xy)(y+xy′)=1x+e−y′y将x=0,y(0)=e2代入,有e2=1e−y′(0)e2
(cos(x+y)-y)\(x-cos(x+y))
ln(x+y)=x·lny(1+y‘)/(x+y)=lny+x/y·y‘y+y·y‘=y(x+y)lny+x(x+y)·y‘y‘=【y(x+x)lny-y】/【y-x(x+y)】再问:лл����
dy/dx=-fx/fy,你自己可以算吧
化为:e^(ylnx)-e^y=sin(xy)两边对x求导:e^(ylnx)(y'lnx+y/x)-y'e^y=cos(xy)(y+xy')y'[lnxe^(ylnx)-e^y-xcos(xy)]=[