设z z x y 是由方程x=lnz y确定的隐函数,求

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:02:36
设y=f(x)是由方程xy+lnx+y=1所确定的函数,求dy.

方程两边同时求x对y的导:y+xdy/dx+1/x+2ydy/dx=0,dy/dx=-(y+1/x)/(x+2y),dy=-(y+1/x)dx/(x+2y)

设u=f(x,z)而z(x,y)是由方程z=x yP(z)所确定的函数,求du

dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,

设y=y(x)是由方程cos(xy)=x 确定的隐函数,则dy是?怎么解的

dcos(xy)=dx-sin(xy)d(xy)=dx-sin(xy)(ydx+xdy)=dx-ysin(xy)dx-xsin(xy)dy=dxdy=-[ysin(xy)+1]dx/[xsin(xy)

设z=f(x,y)是由方程x=y+g(y)确定的二次可微函数,求z对x求偏导.

∂z/∂x=(∂f/∂x)+(∂f/∂y)(dy/dx)//:g(y)+y=xg'(y)y'+y'=1y'=1/[1+g'(y)

高数求偏导:设z=z(x,y)是由方程(e^x)-xyz=0

将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d

设y=f(x)是由方程cos^2(x^2+y)=x所确定的方程 求f'(x)

两边对x求导:2cos(x^2+y)*(-sin(x^2+y))*(2x+y')=1所以y'=-1/sin(2x^2+2y)-2x再问:求f'(x)```再答:y'就是f'(x)啊。。。。。

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设y=y(x)是由方程x*y^3+(e^x)*siny=ln(x)确定的函数,求dy/dx.

不就是对x求导吗?把y看成中间变量y=y(x)说明要想导x要通过y这个中间变量两边对x求导:y^3+(3x*y^2)*dy/dx+(e^x)*siny+(e^x)*cosy*dy/dx=1/x下面你自

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

设z=z(x,y)是由方程(e^z)-xyz=0确定的隐函数,求偏导

对X的偏导=yz/(e^z-xy)对Y的偏导=xz/(e^z-xy)

设z=z(x,y)是由方程(e^x)-xyz=0确定的隐函数,则对x的偏导是?

两边对X求导数就行了撒,把y看成是一个常数,Z看成对x函数就行了撒e^x-(z*y+y*x*zx)=0所以z对x的偏导数zx=(zy-e^x)/(y*x)

,.设y=y(x)是由方程e^x-e^y=xy所确定的隐函数 求y'(0)另一题设y=y(x)由参数方程x=cos t和

网上有很多高数课后习题答案,你可以下载一个参考~e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,原式

设由方程X-Y=e^(xy) 确定由函数Y=f(x),则dy/dx=?

两端对x求导数(把y看作x的函数),则1-y'=e^(xy)*(1*y+x*y')y'[xe^(xy)+1]=1-ye^(xy)dy/dx=y'=[1-ye^(xy)]/[xe^(xy)+1]

设由方程x的平方 2xy-y的平方=2x确定y是x的函数,求微分dy

原式两边微分2ydx+2xdy-2ydy=2dx故dy=(1-y)dx/(x-y)

1.设隐函数y=y(x)是由方程x=ln(x+y)所确定,试求dy/dx.

1.对x=ln(x+y)求微分,得dx=(dx+dy)/(x+y),∴dy=(x+y-1)dx,∴dy/dx=x+y-1.2.e^(xy)+y^3-5x=0,①求微分得e^(xy)*(ydx+xdy)

设y=f(x,z),而z是由方程g(x,y,z)=0所确定的x,y的函数,

若z=f(x,y)由方程F(x,y,z)=0确定,则将F(x,y,z)=0两边对x,y求导(x,y视为独立变量,z视为x,y的函数)这个是没有问题的,但此处x,y为两个独立的变量;题1.设y=f(x,

设Y=F(x)是由函数方程ln(x+2y)=x^2+y^2所确定的隐函数,求Y

F(x,y)=x^2+y^2-ln(x+2y)Fx=2x-1/(x+2y)Fy=2y-2/(x+2y)F(x)=-Fx/Fy=-[2x(x+2y)-1]/[2y(x+2y)-2]