设z=uv^2 tcosu,u=e^t,v=lnt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:14:25
设z=cosA+isinA所以u=z^-2=cos2A-isin2A|u|=1题写错了.
1.Z=a+bi1/z=a/(a^2+b^2)-b/(a^2+b^2)iZ+Z分之一是实数,b-b/(a^2=b^2)=0a^2+b^2=1|Z|=√(a^2+b^2)=1-1
解:假设z=a+bi则u=(a^2-b^2-2)+2abi因为|z|=1,则a^2+b^2=1(数形结合分析可以知道-1
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
U还是整数集啊A和B在这里是干扰的,根本对U没有影响,反而是受限于U的
有些条件是多余的.由z-y²=u⁴,z+y²=v⁴相加得z=(u⁴+v⁴)/2≥u²v²(均值不等式).由v>u
其实很简单,只不过是一种运算的方法(可以跟a(bc)=abac类比).y=uv,y再问:什么
将e^(u+v)=uv两边对u求导得: e^(u+v)*(1+v')=v+u*v' 解得v'=(v-e^(u+v))/(e^(u+v)-u) 即dv/du=(v-e^(u+v))/(e^(u+v
ux=2x/(x^2+y^2+z^2)uy=2y/(x^2+y^2+z^2)uz=2z/(x^2+y^2+z^2)故du=uxdx+uydy+uzdz=2x/(x^2+y^2+z^2)dx+2y/(x
其实就是求z的导数,cost^2求导为2cost*(-sint),t^6求导是6t^5,cost*t^3求导是-sint*t^3+cost*3*t^2,综合起来就是2cost*(-sint)+6t^5
dy/dx=dy/du*du/dx+dy/dv*dv/dx=v*e^(x+y)+u*y/x=ln(xy)*e^(x+y)+e^(x+y)*y/x=e^(x+y)[ln(xy)+y/x]所以dy=e^(
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
①偏z/偏x=偏z/偏u偏u/偏x+偏z/偏v偏v/偏x=(2uv-v^2)siny+(2uv-v^2)cosy=(2x^2sinycosy-x^2(cosy)^2)siny+(2x^2sinycos
这个是多个参数的全微分的求法du=(2xdx+2ydy+2zdz)/(x^2+y^2+z^2)
由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个
f(x)=u(x)v(x)f(x+△x)-f(x)=u(x+△x)v(x+△x)-u(x)v(x)=u(x+△x)v(x+△x)-u(x)v(x+△x)+u(x)v(x+△x)-u(x)v(x)=[u
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d
z=u²v+3uv^4,u=e^x,v=sinx,求dz/dxdz/dx=2uu'v+u^2v'+3u'v^4+3v(4v^3)v'=2e^(2x)sinx+e^(2x)cosx+3e^x(