设z=xy xF(u),而u=y x,F(u)为可导函数,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:51:01
dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz所以dz=[yP(z)dx+xP(z)dy]/[1-xyP'(z)]du=df(x,z)=f'x(x,z)dx+f'z(x,
由z=u²v²,其中u=x-y,v=x+y,题型:求复合函数的偏导数:z=(x-y)²(x+y)²,dz/dx=(x-y)²×2(x+y)+2(x-y
设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α
F对各分量的偏导依次记为F1,F2,F3.方程对x求偏导得F1·(2u·∂u/∂x-2x)+F2·2u·∂u/∂x+F3·2u·∂u/
∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
由于偏导符号不好打,以下略述我的思路和解法.首先认清题目已知的是f,g,z的函数形式,所以结果应该是它们的偏导的组合.有g(y,z,t),h(z,t)恒等于0,可以把z,t看成只是y的函数,即z=z(
z=(x+y)^2*cos(x^2*y^2)dz/dx=2*(x+y)*cos(x^2*y^2)-2*(x+y)^2*sin(x^2*y^2)*x*y^2dz/dy=2*(x+y)*cos(x^2*y
Z'x=-yf'(y/x)y/x^2xZ'=-y^2f'(y/x)/xZ'y=xf'(y/x)1/xyZ'y=yf'(y/x)xZ'x+yZ'y=-y^2f'(y/x)/x+yf'(y/x)=y(x-
(z对x的偏导)=y+F(u)+x[F'(u)(-y/x^2)](z对y的偏导)=x+F'(u)/x代入,左边=[xy+xF(u)-yF'(u)]+[xy+yF'(u)]=xy+xF(u)+xy=z+
эu/эx=f'(r)*эr/эx=f'(r)*x/rэ^2u/эx^2=f''(r)*(x/r)^2+f'(r)*(r-x*x/r)/r^2=f''(r)*(x/r)^2+f'(r)*(r^2-x^
分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来
dz/dx是z对x的偏导,这样把u,v都带入的话直接球偏导就好了dz/dx=y*e^(xy)*sin(x+y)+e^(xy)*cos(x+y)同理也可得到dz/dy=x*e^(xy)*sin(x+y)
本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系: f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs
由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个
∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z