设三阶方阵A不等于0,B= 且AB=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:33:22
A可逆,A^(-1)ABA=BA,因此AB与BA相似
C=AB,r(C)=r(AB)
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
行列式中不是有个公式:(A)(A*)=det(A)E那么两边取行列式的det(A)det(A*)=[det(A)]^n所以,detA*=[detA]^(n-1)=a^(n-1)不是是否明白了再问:明白
主要利用矩阵的秩的不等式如果AB=O矩阵那么有r(A)+r(B)=1,因为只有O矩阵的秩才等于0,否则均大于0结合上面的不等式考虑,有r(B)只能是1或者2,不可能是0或者3那么B的三阶子式,也就是其
因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)
A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA
“a不等于1且b不等于1”是“a+b不等于0”的无关命题再问:a+b不等于0不可以推出a不等于1且b不等于-1吗再答:可是你给的命题是“a不等于1且b不等于1再问:我现在已经明白了,谢谢你
A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB
选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为
A,B为n阶方阵,且AB=0,其中A不等于0,B=0不成立(A-B)^2=A^2+B^2也不成立(A-B)^2=A^2+B^2-AB-BA,-AB-BA这两项是不能随便丢弃的,并且很多时候AB不等于B
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)
如图,由条件可推出A是两个可逆阵的乘积,所以A可逆.经济数学团队帮你解答,请及时评价.
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
证:【单位阵全用E表示】1.用分析法:(A-B)[(A+B)*]=[(A+B)*](A-B)←【∵|A+B|!=0,∴A+B可逆】(A+B)(A-B)[(A+B)*](A+B)=(A+B)[(A+B)
|B|不等于0,则r(B)=m而A矩阵是m*(m-1)矩阵所以r(A)