设三阶方阵A不等于0,B= 且AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:33:22
设A,B都是n阶方阵,且|A|不等于0,证明AB与BA相似.

A可逆,A^(-1)ABA=BA,因此AB与BA相似

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)

设A*是n阶方阵A的伴随矩阵,且detA=a (a不等于0),则detA*等于多少?

行列式中不是有个公式:(A)(A*)=det(A)E那么两边取行列式的det(A)det(A*)=[det(A)]^n所以,detA*=[detA]^(n-1)=a^(n-1)不是是否明白了再问:明白

线性代数:设3阶方阵A不等于0,B=(1 3 5,2 4 t,3 5 3)且AB=0,则t=?

主要利用矩阵的秩的不等式如果AB=O矩阵那么有r(A)+r(B)=1,因为只有O矩阵的秩才等于0,否则均大于0结合上面的不等式考虑,有r(B)只能是1或者2,不可能是0或者3那么B的三阶子式,也就是其

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

A.B为n阶方阵且A+B+AB=0,证明AB=BA?

A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA

“a不等于1且b不等于1”是“a+b不等于0”的什么命题

“a不等于1且b不等于1”是“a+b不等于0”的无关命题再问:a+b不等于0不可以推出a不等于1且b不等于-1吗再答:可是你给的命题是“a不等于1且b不等于1再问:我现在已经明白了,谢谢你

设n阶方阵A满足A^2=En 且 |A+En|不等于0,证明:A=En

A^2=AA=E===>A=A'=A^(-1)=A^*并且A不为0或(-E)因为E^2=E===>A^2-E^2=0===>(A+E)(A-E)=0--->A=EToyourquestion:IfAB

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=0,其中A不等于0,则B=0成立么?

A,B为n阶方阵,且AB=0,其中A不等于0,B=0不成立(A-B)^2=A^2+B^2也不成立(A-B)^2=A^2+B^2-AB-BA,-AB-BA这两项是不能随便丢弃的,并且很多时候AB不等于B

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0,证明R(A)《N

假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N

线性代数的一道题若A,B都是n阶方阵,且 B不等于0,AB=0,则必有 A的行列式为0,

因为AB=0,则B的列向量都是齐次线性方程组AX=0的解.(知识点)又因为B不等于0,所以B至少有一列是非零列向量,这个列向量是AX=0的解.即AX=0有非零解,故A的行列式等于0.(知识点,A为方阵

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

A是n阶方阵,若存在n阶方阵B不等于0,使得AB=0,证明A的秩小于n

因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)

设A,B为n阶方阵,已知B的行列式不等于0,A-E可逆且(A-E)的逆矩阵=(B-E)的转置,证明A可逆.急,

如图,由条件可推出A是两个可逆阵的乘积,所以A可逆.经济数学团队帮你解答,请及时评价.

设AB均为n阶方阵,若AB=0,且B不等于零,则必有A为不可逆矩阵,为什么啊

又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆

线性代数问题1.设A.B均为n阶方阵,若|A+B|不等于0,且AB=BA,则(A-B)【(A+B)*】=【(A+B)*】

证:【单位阵全用E表示】1.用分析法:(A-B)[(A+B)*]=[(A+B)*](A-B)←【∵|A+B|!=0,∴A+B可逆】(A+B)(A-B)[(A+B)*](A+B)=(A+B)[(A+B)