设下1,x2...x5是来自样本N(0,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:47:49
U(-1,1) -->f(x) = 1/2 for -1 < x < 1;&nb
(x1+x2+x3+x4+x5)/5=20x1+x2+x3+x4+x5=100(x1+x2+1+x3+2+X4+3+X5+4)/5=(x1+x2+x3+x4+x5+10)/5=110/5=22
所求数学期望与X~N(0,1)的数学期望相同,为0.
∵x1+x2+x3+x4+x5+x6+x7=13x1+20x2=2010,利用整除性,x1必是10的奇数倍,又x1<x2,可得x1=10x2=94,x1=30x2=81,x1=50x2=68,(x1+
证:因为已知数据的平均数是2,即(x1+x2+x3+x4+x5)/5=2所以,要证的数据平均数=(3x1-2+3x2-2+3x3-2+3x4-2+3x5-2)/5=(3(x1+x2+x3+x4+x5)
由Xi~N(3,4)得Xi-3~N(0,4)得(Xi-3)/4~N(0,4/(4^2))所以(Xi-3)/4~N(0,1/4)
由题可知21(X1+X2)+12X2=2010X1+X2+X3=2(X1+X2)X1+X2=(2010-12X2)/21又所有数字由自然数构成当X2=10时X1+X2=(2010-120)/21=90
1+1+1+1+5=1*1*1*1*51.01+1.01+1.01+1.01+99.497561940310821517382150186644=1.01*1.01*1.01*1.01*99.4975
x1^2+x2^2服从自由度2的卡方分布.
1假设X1+X2=M为最大值,则X2+X3,X3+X4和X4+X5均小于或等于M所以x1+x2+x3+x4+x5
(X1,X2,X3,X4,X5,X6)为来自总体X的简单随机样本所以(X1+X1+X3)~N(0,3)(X4+X5+X6)~N(0,3)所以而1/√3(X1+X1+X3)~N(0,1);1/√3(X4
X拔*5=(X1+X2+X3+X4+X5)=>X1+1+X2+2+X3+3+X4+4+X5+5=X拔*5+15故新平均数是(X拔*5+15)/5=X拔+3
LS你没有写对(X+1)(X^4-X^3+X^2+1)=1+X+X^2+X^5楼主的那个题目如果是:x^5-x^4+x^3+x^2+1没有因式得提拉
是否是这个http://zhidao.baidu.com/question/549533306.html再问:是,不过已经解决了,谢谢再答:呵呵,没有关系.祝你学习进步,快乐成长.
楼上的.是"Pleasestudyhard.”
x5-x4+x3-x2+x-1=x4(x-1)+x2(x-1)+(x-1)=(x-1)(x4+x2+1)=(x-1)(x4+2x2+1-x2)=(x-1)[(x2+1)2-x2]=(x-1)(x2+x
期望值和方差均求和即可,因为这个X1+X2+X3是线性的关系.再问:我想知道是怎么算的?谢谢!再答:E(X+Y)=E(X)+E(Y)方差=E[(X+Y)²]-[E(X+Y)]²=E
x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7
根据线性关系有:(X1+X2+X3)~N(0,3),:(X4+X5+X6)~N(0,3),所以(1/3)*[(X1+X2+X3)^2(的平方)]~X(1)(X是卡方分布符号),(1/3)*[(X4+X