设二维随机变量xy的联合分布律为,求p(0.5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:50:21
(1)limA(B+arctanx/2)(C+arctany/2)=0-无穷limA(B+arctanx/2)(C+arctany/2)=1+无穷所以A=1/πB=π/2C=π/2(2)接下去就是求导
F(x,y)=A(B+arctanx/2)(C+arctany/3)F(-∞,-∞)=A(B-π/2)(C-π/2)=0F(-∞,+∞)=A(B-π/2)(C+π/2)=0F(+∞,-∞)=A(B+π
首先填x1,y1吧,就是因为P11+P21=P.j,所以有P11=1/6-1/8=1/24然后填P1.,因为P1.*P.1=P11,所以P1.=(1/24)/(1/6)=1/4然后再用P11+P12+
/>(1)由概率和为1可知0.1+0.3+0.1+a+0.2+0.1=1解得a=0.2(2)不好列表,我就单个写吧P(X=0)=0.1+0.2=0.3P(X=1)=0.3+0.2=0.5P(X=2)=
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
1)c(∫(0~2)ydy)(∫(0~2)xdx)=14c=1c=1/42)一看互相不干涉取值就可以说是独立了fx=(1/4)∫(0~2)xydy=x/2(0
其他情况密度为0,就不用积分了,0怎麼积分都是0F(x,y)=0(x
你要先把积分区域画出来,取不同的点积分区域是不一样的,比如0〈=x=x这种情况,积分区域是这个点左下所有区域(以这个点为中心画两条平行于坐标轴的线,分成4块,左下的那块)和D的交集,你在0〈=x=x这
由性质得:F(+∞,+∞)=1,则A(B+arctanx/2)(C+arctanY/3)=A(B+π/2)(C+π/3)F(-∞,+∞)=0A(B+arctanx/2)(C+arctanY/3)=A(
∫[0,1]{∫[x^2,x]kdy}dx=k∫[0,1]{(1/2)x^2|[上限x,下限x^2]}dx=∫[0,1](x-x^2)dx=k(1/2–1/3)=k/6=1--》k=6f(x)=∫[x
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
由设X和Y相互独立,可得P(X=xi,Y=yj)=pi*pj,可得\x09\x09\x09\x09\x09y1\x09y2\x09y3\x09P(X=xi)=Pix1\x091/24\x091/8\x
若X与Y相互独立,则f(x,y)=fx(x)*fy(y)即联合概率密度等于x和y边缘密度的乘积显然在这里0≤X≤Y≤1,fx(x)=∫(0到1)f(x,y)dy=∫(0到1)8xydy=4x²
假设横排的是X,竖排的为YX的边际分布P(X=0)=0.15+0.05=0.2P(X=2)=0.25+0.18=0.43P(X=5)=0.35+0.02=0.37Y的边际分布P(Y=1)=0.15+0
第一行1/80第二行1/83/81/33/8第三行1/61/3希望有所帮助
E(x)*E(Y^2)=E(x)*((E(Y))^2+D(y))再问:能不能详细点呀再答:你前面都做出来啦?而E(xy^2)=e(x)*e(y^2),求出e(x)和E(y^2)啊再问:知道啦,谢谢啦,
有没用具体的题目不然不好表述