设函数fx=2ln(x-1)-(x-1)²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:44:53
已知函数fx=ln(x+根号下x^2+1)的导数是?

记u=x+√v,v=x^2+1v'=2xu'=1+v'/(2√v)=1+2x/(2√v)=1+x/√v则f(x)=lnuf'(x)=u'/u=(1+x/√v)/u=(x+√v)/(u√v)=1/√v=

设函数fx=x ln(e^x+1)-1/2x^2+3,x属于[-t,t],(t>0),若函数的最大值是M,最小值是m,则

求导得:f'(x)=ln(e^x+1)+[xe^x/(e^x+1)]-x=ln(e^x+1)-x/(e^x+1)=[1/(e^x+1)][(e^x)ln(e^x+1)+ln(e^x+1)-ln(e^x

设fx的一个原函数是Ln^2 X,求定积分xf'(x)dx 上限e下限1

答:∫f(x)dx=(lnx)^2+C(1---e)∫xf'(x)dx=(1---e)∫xd[f(x)]=(1---e)xf(x)-∫f(x)dx分部积分=(1---e)xf(x)-(lnx)^2=[

已知函数fx=x-1/2ax^2-ln(1+x) . 求 1,fx的单调区间 2,若fx在[0,

解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调

函数fx=ln(2-x)+ax在(0,1]是增函数.

对函数求一次导,令其大于0,即1/(2-x)+a>0,a>1/(x-2)1/ax-2的最小值为-2,但取不到所以1/a

已知函数fx=ln ax+1 +1-x/1+x,x≥0,其中a>0,求1.fx的单调区间 2

已知函数f(x)=ln(ax+1)+(1-x)/(1+x),x>=0,其中a>0,(1)求f(x)的单调区间(2)若f(x)的最小值为1求a的取值范围f′(x)=[a/(a+1)]-[2/(1+x)&

设函数fx=|2x+1|-|x-4|(1)将函数fx写为分段函数的形式(2)画出函数fx的图像(3)写出函数fx的单调区

x再问:能否给一下详细过程?再答:就是分别讨论一下,分别另2x+1=0;x-4=0;得到x=-1/2x=4然后分开看当x=-1/2时|2x+1|=2x+1x=4时|x-4|=x-4然后把x综合一下看看

已知函数fx=ln(x+√(x²+1)

1)因为√(x^2+1)>|x|,所以x+√(x^2+1)恒大于0所以定义域为R2)f(-x)=ln[-x+√(x^2+1)]=-ln1/[-x+√(x^2+1)]=-ln[√(x^2+1)+x]/[

设函数fx=a(x-1/x)-lnx

先得切点(1,0) 在对f(x)求导f'(x)=(x^2-x+1)/x^2  得斜率k=1l :y=x-1求导得f'(x)=(ax^2-x+a)

设fx=(2x+1),则fx导函数展开式中x^3的系数是多少

答案是8f(x)导数是f(x)=2,3次方后是8.x三次方没有了,系数为0

求函数fx=ln(x-1)+0.01x的零点个数

定义域为x>1,在定义域内,ln(x-1),及0.01x都是单调增函数,故f(x)也是单调增函数,最多只有一个零点.又f(2)=0.02>0f(1.5)=-ln2+0.015

设函数f(x)=(1+x)的平方-2ln(1+x) 求fx的单调区间 0

f'(x)=2(x+1)-2/(x+1)-2x-a令f'=0解出a=2x/x+1因为0

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x²-2mx+1,求函数fx在[0,4]上的最小值.

f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.

设函数fx=x(e^x-1)-1/2x^2则函数fx的单调增区间为

fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=

设函数fx=1/2x^2-2ax+(2a^2-a-1)/2ln(2x-1),其中a>-1/2

1)f'(x)=x-2a+(2a^2-a-1)/(2x-1)f'(3)=0,得:3-2a+(2a^2-a-1)/5=015-10a+2a^2-a-1=02a^2-11a+14=0(2a-7)(a-2)