设函数fx=2x^3 3ax 3bx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:49:43
设函数fx=sin( φ-2x)(0

设函数fx=sin(φ-2x)(0

设函数fx=x+1分之x+2,判断fx的单调区间,并证明,

再答:����再答:л��再问:�Ǻǣ���Ӧ��л��

设随机变量x的密度函数为fx=2x(0

同学,你的问题中的“密度函数”应该是“分布函数”吧,要好好看书哦!公式书上也有的.第一步:求出变量x的密度函数,方法是对f(x)在求不定积分,结果是Px(x)=x^2;第二步:求出y=lnx的反函数,

设函数fx=|2x+1|-|x-4|(1)将函数fx写为分段函数的形式(2)画出函数fx的图像(3)写出函数fx的单调区

x再问:能否给一下详细过程?再答:就是分别讨论一下,分别另2x+1=0;x-4=0;得到x=-1/2x=4然后分开看当x=-1/2时|2x+1|=2x+1x=4时|x-4|=x-4然后把x综合一下看看

设函数fx=2cos^2x+2根号3sinxcosx-1(x属于R),若x属于[0,π/2],求函数fx的值域

fx=2cos^2x+2根号3sinxcosx-1=2cos^2x-1+2根号3sinxcosx根据倍角公式,sin2α=2sinαcosαcos2α=2cos^2(α)-1fx=cos2x+根号3s

设函数fx=x-a/2lnx,其中a属于R 求fx的单调增区间

对f(x)求导得f'(x)=1-a/(2x),要求f(x)的单调增区间,则求f'(x)>=0,则1-a/(2x)>=0.即a/(2x)0时,x>=a/2,当a

设函数fx=a(x-1/x)-lnx

先得切点(1,0) 在对f(x)求导f'(x)=(x^2-x+1)/x^2  得斜率k=1l :y=x-1求导得f'(x)=(ax^2-x+a)

设fx=(2x+1),则fx导函数展开式中x^3的系数是多少

答案是8f(x)导数是f(x)=2,3次方后是8.x三次方没有了,系数为0

设函数fx=cos(根号3 x+q) (0

F(X)=cos(√3x+t)F'(X)=-√3sin(√3x+t)F(X)+F'(X)=cos(√3x+t)-√3sin(√3x+t)是奇函数所以F(0)+F'(0)=0即cost-√3sint=0

设函数fx=x^3+ax^2-a^2x+m其中实数a>0.

这是求什么啊,怎么连个问题也没有

设函数f(x)=|x-2|+x 求函数fx值域

1.x>=2f(x)=x-2+x=2x-2x=2,fmin=2,f(x)>=22.x=2g(x)=2f(x)=2x-2/x+1/32.x

已知函数fx=ax^2+bx+1,Fx={fx,x>0 -(fx),x

首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/

设函数fx=x²-2mx+1,求函数fx在[0,4]上的最小值.

f(X)=(X-m)^2+1-m^2,对称轴X=m,①当m≤0时,最小f(0)=1,②当04时,最小f(4)=5-8m.

设定义在R上的函数fx满足fx·f(x+2)=13 ,则fx周期为

fx·f(x-2)=13T=4周期是4很高兴为你回答问题,如果有什么不懂或者疑惑请继续追问.如果没有疑问请采纳.再问:求过程!!再问:是fx·f(x+2)=13再答:对啊,所以可以换成我写的那个意思再

设函数fx=x(e^x-1)-1/2x^2则函数fx的单调增区间为

fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=

设函数fx=2cos^2(π/4-x)+sin(2x+π/3)-1,x∈R.求函数fx的最小正周期.

设函数fx=2cos^2(π/4-x)+sin(2x+π/3)-1=cos(PI/2-2x)+sin(2x+PI/3)=sin(2x)+sin(2x)/2+cos(2x)*sqrt(3)/2=sqrt

设函数fx=log2x,x>0,fx=log1/2(-x)

log2x(x>0)f(x)=log(1/2)(-x)(xf(-a)当a>0,则-alog(1/2)alog2a>-log2alog2a+log2a>02log2a>0a>1当a0log(1/2)(-

已知函数fx=lnx/x-x 1.求函数fx单调区间 2.设m>0求fx在[m.2m]上的最大值

1)定义域为x>0f'(x)=(1-lnx)/x^2-1=(1-lnx-x^2)/x^2x>0时,lnx及x^2都是单调增函数,因此1-lnx-x^2是单调减函数,故1-lnx-x^2=0至多只有一个