设函数y=fx在(负无穷,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:42:59
设函数fx具有一阶连续导数,且曲线y=fx与y=sinx在原点处相切,则limx趋于正无穷根号下xf(2/x)等于多少?

相切就是切线斜率相同.故在x=0点,f'(x)=(sinx)'即f'(0)=1而f(x)又是过原点的故f(0)=0那么limxf(2/x)=2*limf(2/x)/(2/x)令t=2/x得limf(2

设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,证明若fx为偶函数,则Fx也是偶

再问:-x怎么变成x的再答:那一步令u=-t。所以上下限都加负号

已知函数fx是定义域是R的偶函数,若fx在(0,到正无穷)上是增函数 证明fx在(负无穷,0)上是减函数

取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>

已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y )

f(√2)=1/2利用恒等式f(xy)=f(x)+f(y)f(2)=f(√2)+f(√2)=12f(√2)=1f(√2)=1/2

设函数y=fx是定义在(0,+无穷)上的增函数 且满足fx/y=fx-fy求证(1)fxy=fx+fy (2)若f2=1

f(y)=f(xy/x)=f(xy)-f(x)那么f(x)+f(y)=f(xy)f(x)-f[1/(x-3)]≤2f[x(x-3)]≤f(2)+f(2)f(x²-3x)≤f(4)因为y=f(

已知fx的定义域为0到负无穷,且函数f2=1,fxy=fx+fy,当x>y时.fx>fy,(1)求f1,f4的值.(2)

这个题目用的是逆向思维哦由f(2)=1f(xy)=f(x)+f(y)可知f(2)=f(1)+f(1)=2f(1)推出f(1)=1而f(1)=f(1)+f(0)所以f(0)=0同理啦f(4)=2f(2)

设函数y=fx是定义在(0,正无穷)上的减函数,并且fxy=fx+fy

没有别的条件了吗?再问:还有一个问求f1的值再答:题目给的条件就只有这些了?应该还漏了一个吧,虽然得出了f1=0,但也算不出来m啊再问:还有一个f(1/3)=1再答:(1)f(1/3)+f(1/3)=

设函数fx是定义在(负无穷,0)∪(0,正无穷)上的函数,且满足3f(x)+2f(1/x)=4x,求fx解析式

令y=1/x,则方程化为:3f(1/y)+2f(y)=4/y;将这个式子中的y换成x,得:2f(x)+3f(1/x)=4/x;得到两个式子:1式:3f(x)+2f(1/x)=4x;2式:2f(x)+3

已知函数fx=a^x+x²-xlna,a>1,(1)证明fx在(0,正无穷)上单调递增(2)函数y=

说明:第二问没有写完整,只能回答第一问.(1)证明:∵a>1,则lna>0,a^x>1(x∈(0,+∞))∴fx'=a^xlna+2x-lna=(a^x-1)lna+2x>0故fx在(0,+∞)上单调

证明函数fx=x3+3x在(负无穷,正无穷)上成增函数

y'=3x²+3>0所以函数f(x)=x3+3x在(负无穷,正无穷)上成增函数

证明函数fx=x3+3x在(负无穷,正无穷)上成增函数 请把步骤写详细些,用高一的方法设x1,x2的,谢谢

设x1再问:=(x1-x2)(x1²+x1x2+x²/4+3x2²/4+3)什么意思啊再答:x1²+x1x2+x2²+3=x1²+x1x2+

函数y=x^2在区间(负无穷,0)上的单调性是

函数y=x^2在区间(负无穷,0)上的单调性是:单调减

判断函数y=x2+1/x在(负无穷,0)上的单调性

y=(x^2+1)/x=x+1/x,y'=1-1/x^2当-∞

已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增函数

-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3

高一已知函数F(x)=a/2-2x/(2^x+1)证明函数fx在正无穷和负无穷区间上是增函数

首先,我们必须知道:指数函数y=2^x,是x轴上的单调增函数.在下面的步骤里,我们不用x1,x2等等,我们改用m