设函数z=sin(x^2 y),则dz dx求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:39:34
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
1、对X求导(导数符号无,用“£”代替)两边对x求导有:2x2z£z/£x=-ycos(z/x)/x^2*£z/£x:化简得:£z/£x=-2x/[2zycos(z/x)/x^2]:2、对y求导两边求
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
xx=-5:0.1:5;yy=xx;[x,y]=meshgrid(xx,yy);z=x.^2+y.^2+sin(x.*y);subplot(1,2,1)mesh(x,y,z)subplot(1,2,2
两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co
先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-
x^2+y^2+z^2=cos^2φcoc^2Θ+cos^2φsin^2Θ+sin^2φ=1.F=x^2+y^2+z^2Fx=2xFz=2zz对x的偏导数=一Fx/Fz=一x/z.
f(x)=sin2(x+y/2)由于sin2x对称轴为π/4+kπ/2;故x+y/2=π/4+kπ/2x=π/4+kπ/2-y/2;将x=x=π/8代入,得y=π/4+kπ,根据y的范围可知:y=-3
dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy
再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
y=sin(π/4+x/2)sin(π/4-x/2)=sin(π/4+x/2)sin[π/2-(π/4+x/2)]=sin(π/4+x/2)cos(π/4+x/2)=1/2sin(π/2+x)=1/2
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
这是隐函数.二阶导再导一次就是.方程两边对x求导,得z'=cos(xz)(xz)'+y(y不是关于x的函数吧?)=zcos(xz)+xz'cos(xz)+y所以z'=[zcos(xz)+y]/[1-x
z=sin(x²y²)+3x-5y²+1所以δz/δx=cos(x²y²)*2xy²+3δz/δy=cos(x²y²)*
y=sin(π/4+x/2)sin(π/4-x/2)=-1/2(cosπ/2-cosx)=1/2(cosx)递增区间是x∈[2kπ+π,2(k+1)π]k∈Z
函数y=3sin(2x+φ)的对称轴是x=-φ/2+kπ/2,k是整数由π/3=-φ/2+π/4+kπ/2,0