设四阶矩阵的特征值为1 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:07:39
已知n价可逆矩阵A的特征值为λ,则矩阵(2A)^(-1)的特征值为?

1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.

设三阶矩阵A的特征值为 1,2,3,

令P=110101111则P^-1AP=diag(1,2,3)所以A=Pdiag(1,2,3)P^-1

设三阶矩阵A的特征值为-1.0.2,则4A-E的特征值为?

答案是-5,-1,7,用定义如图计算.经济数学团队帮你解答,请及时采纳.

怎么证明幂零矩阵的特征值为零

设A^m=0,特征值为c,则有Ax=cx,A^2x=c^2x,以此类推有A^mx=c^mx,由A^m=0有c^m=0,因此c=0,即A的特征值是0

矩阵A 的特征值为a,矩阵B的特征值为b,这A+B的特征值为a+b吗?

不一定,一个东西只适应一个,不可能把所有的有点集于一身

线性代数 正交矩阵的特征值只可能为1或-1吗?是特征值,不是行列式!

因为正交变换不改变空间里面向量的长度所以特征值是+-1

正交矩阵的特征值为——

正交阵的特征值是模为1的复数,共轭复根成对出现,仅此而已.反过来任何满足上述条件的复数都可以作为正交阵的特征值.楼上纯属忽悠,随便举个例子A=001100010再问:那么实特征值呢

三阶矩阵A的特征值为2,1,1,则矩阵B=(A*)^2+I的特征值为?

|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

矩阵A的特征值为 2,则?A2-E的特征值怎么算?

利用特征值和特征多项式的关系设矩阵A的特征值x那么利用特征值与矩阵多项式关系可知A2-E的特征值为f(x)=x^2-1即有f(2)=2^2-1=3

如何证明正交矩阵的特征值为1或-1

设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量即有Ax=λx,且x≠0.两边取转置,得x^TA^T=λx^T所以x^TA^TAX=λ^2x^Tx因为A是正交矩阵,所以A^TA=E所以x^Tx

已知矩阵A的特征值为入,求A的平方的特征值.

题:已知矩阵A的特征值为k,求A的平方的特征值.由以下命题3知,上题答案为k^2.以下摘自我的某个答题,未加改动.命题3:(证明见后)若方阵A有特征值k,对应于特征向量ξ,当f(A)为A的幂级数(允许

设四阶矩阵A 的元素全为1,则 A 的非零特征值为

4det[1-a,1,1,1;1,1-a,1,1;1,1,1-a,1;1,1,1,1-a]=det[-a,0,0,a;0,-a,0,a;0,0,-a,a;1,1,1,1-a;]=a^3*det[-1,

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

实对称矩阵的特征值必为实数

证明:设λ是实对称矩阵A的特征值,α是A的属于特征值λ的特征向量即有A'=A,A共扼=A,Aα=λα,α≠0.考虑(α共扼)'Aα=(α共扼)'A'α=(Aα共扼)'α=((Aα)共扼)'α所以λ(α

已知3阶矩阵A的特征值为1、-1、2,则矩阵A2+2E的特征值为

A2的特征值为1,1,4A2+2E的特征值为3,3,6