设实对称矩阵A满足(A-E)(A的平方 A-3E)=0 证明A=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:55:52
设A为n阶实对称矩阵,且A-3A+3A-E=0,证明A=E

设λ是A的特征值,则λ^3-3λ^2+3λ-1=0λ=1所以,A与E相似存在可逆矩阵P,使得P^(-1)·A·P=E∴A=P·E·P^(-1)=E

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

线性代数题目设A是2阶实对称矩阵,且满足A^2+A-6E=0,其中E是2阶单位矩阵,求行列式detA的值

2种解法,楼主不知道看出错误的那个了没?用特征值的解法是正确的,2个矩阵相乘为0,不能得出其中某一时0矩阵,反例送上0100和0200相乘可以试试

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设实对称矩阵A满足(A-E)(A²+E)=0证明A=E

因为(A-E)(A²+E)=0所以A的特征值a满足(a-1)(a^2+1)=0由于实对称矩阵的特征值都是实数所以a=1故A的特征值为1,1,.,1又因为实对称矩阵可对角化所以A=Pdiag(

设4阶矩阵A满足|3E-A|,AAT=2E,|A|

AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!

设A+B都是n阶对称矩阵,E+AB可逆,证明(E+AB)^-1A也是对称矩阵.(E+AB)的逆矩阵乘A

证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^

老师您好,我有一个题想询问一下.实对称矩阵A,满足A方=E,|A|1

因为A^2=E所以(A-E)(A+E)=0所以A的特征值是1,-1又因为|A|0,即k>1.

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

高等数学线性代数问题设n阶实对称矩阵A,满足A^3+A^2+A=3E,证明A是正定矩阵. 我是这样想的:λ^3+λ^2+

证明:因为A^3+A^2+A=3E所以A的特征值λ满足λ^3+λ^2+λ-3=0所以(λ-1)(λ^2+2λ+3)=0又因为A是实对称矩阵,实对称矩阵的特征值都是实数所以λ=1即A的特征值为1,1,.

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

若A为n阶实对称矩阵且满足A∧2+4A+4E=0,证明:A=-2E

因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(

线性代数的问题1.设A是3阶实对称矩阵,B=A^5-4A^3+E,其中E为3阶单位矩阵.为什么由A是实对称矩阵可知B是实

1.B^T=(A^5-4A^3+E)^T=...自己继续写下去看看,是不是等于B就行了2.如果x1,x2,...,xn正交,且非零c1x1+c2x2+...+cnxn=0用xk对两端做内积就得到ck=

设A为m×n实矩阵(m≠n).E是n×n单位矩阵,证明E+A∧TA是正定对称阵.

利用定义就可以了,对任意的非零向量xx^T(E+A^TA)x=x^Tx+(Ax)^T(Ax)>0

设三界是对称矩阵A满足A^3-3A^2+5A-3E=0,则A的三个特征值为?

特征方程为r³-3r²+5r-3=0r³-r²-2r²+2r+3r-3=0r²(r-1)-2r(r-1)+3(r-1)=0(r-1)(r&#

设A为n阶实对称矩阵.1.证明A的平方+E也为实对称矩阵2.证明:A的平方+E为正定阵其中E为n阶单位阵

由已知,A^T=A1.(A^2+E)^T=A^2+E2.对任一n维向量x≠0,x^Tx>0,(Ax)T(Ax)>=0所以x^T(A^2+E)x=(x^TA)(Ax)+x^Tx=(Ax)^T(Ax)+x