设总体X~N(U,O2),O2的无偏估计量C ∑(Xi 1-Xi
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:03:42
如果题目没错的话,就是这么做的
再问:请问Var是什么啊?再答:方差呀
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
U={1,2,3,4,5}AUB={1,3,5}求的是?Cu(AUB)={2,4}C
O2-和后面的O2+化合价平衡元素守恒H2O和H2O2没有化合价但元素不守恒这个方程化合价已经平衡了,但是元素不守恒,所以方程是错的
1.N(u,o2),u,o2未知,(X1,X2)为e的样本,则可以成为统计量的是D)2X1X2A)X1+uB)X1+O2C)uX1D)2X1X2判断题:2.已知随机变量e服从于[1,4]的均匀分布,则
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
对任意i,显然都有E(Xi)=θ/2,故E(θ1)=2E(X0)=2/n∑E(Xi)=2*θ/2=θ令t=X(n)为次序统计量,根据次序统计量的密度公式,其密度为g(t)=nF(t)^(n-1)p(t
X=8/2=4mol
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)
(1).X的密度函数f(x)=1/(2Ө-Ө)=1/Ө,(Ө≤x≤2Ө);f(x)=0,其他.EX=∫[Ө,2Ө]x
(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n
第一个标准正太第二个t(n-1)
再问:啊在书上看到了概念不好意思==三克油么么哒ww
s^2是修正样本方差,那么17*s^2/σ^2符合卡方(17)分布,p(s^2/a^217*1.2052)=1-p(17*s^2/σ^2>20.4884),查表,=1-X^2(17),上分位点α=0.
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同.应该是X=X1…Xn~B(n,p)就对了,前提是诸Xi彼此独立.可以直接求X的
已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b