设数列an是一个公差为d(d不等于0)的等差数列,已知它的前10项和110

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:12:41
设a1,a2,…,an是各项不为零的n(n≥4)项等差数列,且公差d≠0.若将此数列删去某一项后,得到的数列(按原来顺序

设数列{an}的公差为d,则各项分别为:a1,a1+d,a1+2d,…,a1+(n-1)d,且a1≠0,d≠0,假设去掉第一项,则有(a1+d)(a1+3d)=(a1+2d)2,解得d=0,不合题意;

设各项均为正数的数列{an}的前n项和为Sn,已知2an=a1+a3 数列{根号Sn}是公差为d的等差数列

这是今年江苏卷上的题目…………(1)设根号Sn=d*n+HSn=d^2*n^2+2*d*H*n+H^2a1=S1=d^2+2*d*H+H^2a2=S2-S1=3*d^2+2*d*Ha3=S3-S2=5

设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列,求公差d的值和数

a2=a1+d a4=a1+3d(a2)2=a1×a4即(a1+d)2=a1(a1+3d)整理得a1d=d2∵d≠0∴a1=dS10=10a1+12×10×9×d=10a1+45d=55a1

设等差数列{An}的公差d不为0,A1=9d.若Ak是A1与A2k的等比中项,则k等于几

由AK是A1与A2k的等比中项,得得(AK)^2=A1*A2K因为A1=9d所以AK=8+KdA2K=8+2Kd所以(8+Kd)^2=9d*(8+2Kd)(K-4)*(k+2)=0因为K>0所以K=4

设等差数列{an}的公差为d不为0,a1=9d,若ak是a1与a2k的等比中项,则k=

a1=9dak=a1+(k-1)*d=9d+(k-1)*da2k=a1+(2k-1)*d=9d+(2k-1)*dak^2=a1*a2k化简后可求出k=4

数列{an}是公差为d的等差数列,用定义法证明数列{a(4n-3)}是等差数列

由题an递推公式为an=a1+(n-1)d把n用4n-3代替有递推公式a(4n-3)=a1+(n-1)*4d则a(4n-3)也是等差数列,公差为4d

{an}为等差数列,公差d>0,Sn是数列{an}前n项和,

解题思路:1)利用等差数列的通项公式和前n项和公式即可得出;(2)利用(1)和裂项求和即可得出.解题过程:最终答案:略

设数列{an}是公差为d的等差数列,a3+a5=2,S20=150,又bn=2an−2an+1(n∈N*)

(1)由等差数列的通项公式及求和公式可得a1+2d+a1+4d=220a1+20×19d2=150∴d=1,a1=-2(2)∵bn=2an-2an+1=21-n=(12)n-1∴bnbn-1=12∴数

设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等差数列.

设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn

设等差数列{an}的公差d不为0,a1=9d.若ak是a1与a2k的等比中项,则k=?

a1=9d则ak=9d+(k-1)d,a2k=9d+(2k-1)d因为ak为a1和ak的等比中项则有ak的平方等于a1乘以a2k即{9d+(k-1)d}^2=9d{9d+(2k-1)d}化简消去d得:

设数列{an}是公差为d(d>0)的等差数列,Sn为{an}的前n项和,已知S4=24,a2乘a3=35,(1)求数列{

(1)S4=2(a2+a3),a2+a3=12a2a3=35t^2-12t+35=0a2=5,a3=7an=2n+1(2)1/an(an+1)=(1/2)[1/(2n+1)-1/(2n+3)]Tn=1

设等差数列an的公差为d不等于0,前n项和为Sn.则Sn为递增数列的充分必要条件是

Sn=a1+(n-1)dd作为自变量,是一次函数只要d>0Sn就单调递增所以Sn为递增数列的充分必要条件是d>0

设{an]是一个公差为d(d≠0)的等差数列,它的前10项和s10=110且a1,a2,a4成等比数列,求

A2=A1+dA4=A1+3d(A2)^2=A1×A4(A1+d)^2=A1(A1+3d)(A1)^2+2A1d+d^2=(A1)^2+3A1dA1d=d^2d≠0A1=dS10=10A1+(1/2)

设an是一个公差为d(d≠0)的等差数列,它的前10项和s10=110且a4=8求公差d的值和数列an的通项公式.

设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn

设{An}是一个公差为d(d不等于0)的等差数列,它的前10项和S10=110,且A1.A2.A4成等比数列

A2*A2=A1*A4A2=A1+dA4=A1+d得A1=dA10=10dS10=10(A1+A10)/2=110A1=d=2An=2n

设等差数列{an}的公差d不为零,a1=9d,若ak是a1与a2k的等比中项,则k等于多少.

ak=a1+(k-1)d=9d+(k-1)d=(k+8)da2k=a1+(2k-1)d=9d+(2k-1)d=(2k+8)d又a1a2k=ak^2,即9d(8+2k)d=[(8+k)d]^2k=4

设数列{an}是公差不为零的等差数列

设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9

设等差数列{an}的公差d不为0,a1=9d.若ak是a1与a2k的等比中项,则k=(  )

因为ak是a1与a2k的等比中项,则ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],又d≠0,则k2-2k-8=0,k=4或k=-2(舍去).故选B.

设数列{an}是首项为3,公差为d的等差数列,又数列{bn}是由bn=an+an+1所决定的数列,那么数列{bn}前n项

an=3+(n-1)da(n+1)=3+nd所以bn=6+(2n-1)d=(6-d)+2dn所以bn是等差数列b1=6-d+2d=6+d所以Sn=(b1+bn)n/2=(12+2dn)n/2=dn&s