设数列an的前几项和为Sn,点(n,Sn n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:46:15
(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+
(1)由已知有:2a1=4096得a1=2048,又an+sn=4096,an+1+Sn+1=4096,两式相减得an+1=an/2,所以an是以1/2为公比的等比数列,故an=2048*(1/2)^
你要的答案是:An+1=9Sn+10An=9S(n-1)+10An=Sn-S(n-1)=(1/9)[A(n+1)-An]A(n+1)/An=10所以为等比数列A1=10,q=10An=10*10^(n
等比数列定义an+1=qanq不为零,且各项不为零等差数列定义an+1-an=pp为常数你上面提到的两个问题分别把{an-2an-1}、{an/2^n}看成an
3乘2的n次方减3.3*2^n-3再问:怎么求、再答:先代入1,因为s1=a1,s1=2a1-3,求出a1等于3,再写一个式子,Sn-1=2a(n-1)-3(n-1),用第一个式子减这个式子,得到Sn
1.把(n,Sn/n)代入y=3x-2中化简得Sn=3n2-2nan=Sn-S(n-1)=6n-52.这一问以前做过,似乎要用放缩法吧..不记得了...
对于n>1sn=3an+1sn-1=3an-1+1相减an=3(an-an-1)an=3/2*an-1等比数列,公比3/2首项知道,自己写通项了
解题思路:分析与答案如下,如有疑问请添加讨论,谢谢!点击可放大解题过程:最终答案:略
2^(n+1)-2^n=2*2^n-2^n=2^nb*an-2^n=(b-1)Sn,b*a(n+1)-2^(n+1)=(b-1)S(n+1)两式相减(左-左=右-右):[b*a(n+1)-2^(n+1
设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2
Sn+1=4an+2Sn=4a(n-1)+2相减得Sn+1-Sn=4an+2-4a(n-1)-2an+1=4an-4a(n-1)an+1-2an=2(an-2an-1)bn=2bn-1(2)求数列{a
因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(
/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)
(1)Sn/n=-n+12=>Sn=-n²+12n(2)an=Sn-S(n-1)=-n²+12n+(n-1)²-12(n-1)=-2n+1+12=-2n+13所以an-a
(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+
嗯,我赞同各位大哥的方法,下面是我个人的思路,不知对不对,希望大家能够多多指教,sn=n^2-4n+1Sn-1=(n-1)^2-4(n-1)+1两式相减为an=n^2-(n-1)^2-4化简为an=2
(1)∵an+Sn=4096,∴a1+S1=4096,a1=2048.当n≥2时,an=Sn-Sn-1=(4096-an)-(4096-an-1)=an-1-an∴anan−1=12an=2048(1
因为(n,Snn)在y=3x-2的图象上,所以将(n,Snn)代入到函数y=3x-2中得到:Snn=3n−2,即{S}_{n}=n(3n-2),则an=Sn-Sn-1=n(3n-2)-(n-1)[3(
An+1=1/3Sn3An+1=Sn(1)3An=Sn-1(2)(1)-(2)得3An+1=4An(n大于等于2),所以An是以A2为首项q=4/3的等比数列A2=1/3A1,所以A2等于1/3An=
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: