设方阵A有一个特征值λ=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:39:42
设方阵A有一个特征值λ=2,试证明:方阵B=A^2-A+2E有一个特征值为4.

有个定理,B的特征值为λ^2-λ+2=4再问:什么定理?可以写详细点吗?再答:首先把A做变换得到若当标准型A=RTCRR为正交阵,RT为其转置,C叫啥忘了,由若当块组成,A的特征值就在C对角线上。B=

设n(n>=3)阶方阵A恰有一个特征值为0 则R(A)=?

n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

线性代数 设方阵A有一个特征值为2,证明矩阵A^2-2A不可逆

矩阵A^2-2A是A的多项式,特征值为f(m)=m的平方-2m,即f(2)=0为矩阵A^2-2A的特征值,(A^2-2A)x=mx,因为m=0,所以(A^2-2A)x=0,齐次方程要有非零解,即|(A

设A可逆,方阵的特征值为λ,E-A^(-1)的特征值是多少

若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

设方阵A的每列元素之和均为a,则A必有一个特征值为?

必有一个特征值为a.事实上|A-rE|=0中把其余各行都加到第一行,你会发现第一行每个元素都成了a-r,当r=a时行列式为0,这说明r=a是行列式的一个根,即a是一个特征根.

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设 A为 N阶方阵,方程组AX=0 有非零解,则 A必有一个特征值为 ____ .

∵AX=0有非零解∴存在ε≠0,使Aε=0=0ε即A有特征值0

设A为n阶方阵,且Ax=0有非零解,则A必有一个特征值为( ).原因是啥.

再答:�����������⣬ϣ�����ܲ��ɣ�лл��再问:û���װ�������再答:����Ӧ���и����壺���������ʽֵ��������ֵ�Ļ�再问:���ˡ�Ҫ���ڰ��

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

设2是3阶方阵A的一个特征值,则A^2必有一个特征值是多少?

知识点:若a是A的特征值,g(x)是x的多项式,则g(a)是g(A)的特征值你的题目:g(x)=x^2,g(2)=2^2=4,g(A)=A^2所以4是A^2的特征值注意此类题型的扩展.

设A为n阶方阵,证明:det(E-A*A)=0,则1或-1至少有一个是A的特征值.

E-A*A=(E-A)*(E+A)det(E-A*A)=det[E-A)*(E+A)]=detE-A)*det(E+A)=0sodetE-A)=0ordet(E+A)=0ifdetE-A)=0,1is

设A施3阶方阵有特征值1,2,3,试证|4E-A|=6.

A的特征值为1,2,3,那么4E-A的特征值为3,2,1,所以|4E-A|=3*2*1=6

设2是3阶方阵A的一个2重特征值,问齐次线性方程组(A-2E)x=0有多少个非零解?2重特征值说明了什么?

有无穷个非零解.属于2重特征值的线性无关的特征向量最多有2个这里用不到这个信息由于2是特征值,则(A-2E)x=0有非零解,即有无穷多解

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0

设A为n阶方阵,Ax=0有非零解,则A必有一个特征值?

必有一个特征值为零Ax=0有非零解表明A的秩

设A为3阶方阵,特征值分别为-2,,1,则| 5A-1 |=

第二个特征值如果是0,则结果为44