设随机变量X-N(0,1),Y=X^2 1,求Y的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:48:03
设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设随机变量x~N(0,1),N(1,2),且x,y相互独立,则x-2y=?

首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)

设随机变量X~N(0,1),N(0,1)且X,Y相互独立 求 E[X^2/(X^2+Y^2)]

瀑布汗.(X^2+Y^2)/(X^2+Y^2)=1E(1)=1再问:为什么E(1)=1?我知道(X^2+Y^2)/(X^2+Y^2)=1得出e(1)但为什么E(1)=1?再答:常数的期望等于自己,这题

设随机变量X与Y相互独立,N(1,2),(0,1),求随机变量Z=X-Y的分布,并求P(X>Y )的概率

N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?

设随机变量x~N(0,1),y=2x+1,则y~N( ),求详解,

用正态分布特性计算.经济数学团队帮你解答.请及时评价.

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X~N(0,1),Y=X²,求Y的概率密度.

X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量x,y相互独立 都服从N(0,1) 计算概率P(X^2+Y^2

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

设随机变量x~N(0,1),求p(x

x~N(0,1),意思是,x服从标准正态分布查表得:p(x

设随机变量X~N(0.1),Y=3x-1,则Y服从什么

N(0,1)表示随机变量X服从期望为0,方差为1的正态分布,即标准正态分布其中N是NormalDistribution的缩写,即正态分布.正态分布的概率密度函数为f(x)=]1/(√2π)σ]*exp

设随机变量X〜N(0,1),求Y=2x平方+1的概率密度函数.

当y≥1时FY(y)=P{Y≤y}=P{2X²+1≤y}=P{X≤√[(y-1)/2]}=FX(√[(y-1)/2])fY(y)=dFY(y)/dy=dFX(√[(y-1)/2])/dy=1

设随机变量X~N(0,1),求Y=X^2的概率密度

F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点

设随机变量x~n(0,1),令y=e^-x求概率密度函数

N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0